在Ubuntu 14.04上配置CUDA+Caffe+cuDNN+Anaconda+DIGITS

参考很多文章,以这篇为主:

这篇算是自己对caffe学习的一个总结系列的开头。首先因为caffe的依赖项比较多,配置起来也比较麻烦。这篇算是比较详尽地把caffe的各种相关配置说清楚。转载请注明出处。

推荐Ubuntu 14.04版本,因为digits的支持比较好。显卡支不支持GPU加速要搞清楚啊,不支持就全用CPU算吧,别浪费时间折腾cuda了。

大家基本要按照官方教程上面来。但是官方教程有的坑没有点出来的,本文也一并列上了。

一、显卡的安装

禁用nouveau驱动,nouveau是ubuntu自带的对nivida的开源驱动,对安装nvidia的官方驱动会有问题,所以先将其禁用。

按Ctrl+Alt+F1 进入tty1控制台,输入

sudo vim /etc/modprobe.d/blacklist-nouveau.conf

在里面写上

blacklist nouveau

options nouveau modeset=0

按esc 输入:wq 保存退出

ps:vim编辑器很好用啊,还不会的小伙伴要抓紧时间学啊。

执行

lspci | grep nouveau

查询pci总线中是否还有nouveau,grep后面接正则表达式过滤。

什么都没有说明禁用成功。

重启后登录时,可能会循环出现填写登录密码,不能进入系统的情况,按Ctrl+Alt+F1,登录,

卸载显卡方法:

sudo apt-get remove --purge nvidia*

安装显卡驱动:

$ sudo add-apt-repository ppa:xorg-edgers/ppa

$ sudo apt-get update

$ sudo apt-get install nvidia-352

执行sudo start lightdm 输入密码能看到桌面就ok啦

ps:显卡驱动挂掉之后很可能你就看不到系统界面了,启动之后显示器一团漆黑,其实系统是在运行的。我的做法是先提前装好了SSH服务,碰到这种情况就通过另一台电脑SSH登陆进去安装驱动。

二、CUDA安装

CUDA官网下载。其实应该先下载好的,如果没来得及用图形界面下载,用wget, curl什么的下载也一样。 据说331的驱动有坑啊,大家不要用那个驱动。下面安装一些依赖项/

sudo service lightdm stop

sudo apt-get install g++

sudo apt-get install git

sudo apt-get install freeglut3-dev

首先在官网上下载安装文件(链接前文已经提供):

我下载的是deb本地安装文件,下载完成后,按照文档提示的命令安装:

sudo dpkg -i cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb

sudo apt-get update

sudo apt-get install cuda

下载了下方的Installation Guide for Linux,里面有关于环境变量的设置方法:

如果有,则说明安装成功。没有可以按照下面方法卸载:

sudo /usr/local/cuda-7.5/bin/uninstall_cuda_7.5.plsudo /usr/bin/nvidia-uninstall

最后,配置环境变量,我们直接放在系统配置文件profile里面,先打开profile文件

sudo vi /etc/profile

在最后面加入两行代码:

export PATH=/usr/local/cuda-7.5/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH

执行 source /etc/profile 使环境变量生效

至此cuda安装完毕

三、CUDNN安装

CUDNN是给CUDA加速的。cuDNN是GPU加速计算深层神经网络的库。cudnn官网下载。貌似下载要先注册,审核通过还要几天时间。下载好之后解压。

执行如下命令:

sudo tar xvf cudnn-7.0-linux-x64-v4.0-prod.tgz && cd cuda/include && sudo cp *.h /usr/local/include/ && cd ../lib64 && sudo cp lib* /usr/local/lib/ && cd /usr/local/lib && sudo chmod +r libcudnn.so.4.0.7 && sudo ln -sf libcudnn.so.4.0.7 libcudnn.so.4 && sudo ln -sf libcudnn.so.4 libcudnn.so && sudo ldconfig

这样CUDNN就安装完毕了,是不是很简单啊。

四、Anaconda的安装

https://www.continuum.io/downloads 下载anaconda,推荐使用linux版的Python 2.7版本,因为tensorflow中的有些东西不支持python3.5(如cPickle)。

下载成功后,在终端执行(2.7版本):

# bash Anaconda2-4.1.1-Linux-x86_64.sh

或者3.5 版本:

# bash Anaconda3-4.1.1-Linux-x86_64.sh

在安装的过程中,会问你安装路径,直接回车默认就可以了。有个地方问你是否将anaconda安装路径加入到环境变量(.bashrc)中,这个一定要输入yes

安装成功后,会有当前用户根目录下生成一个anaconda2的文件夹,里面就是安装好的内容。在终端可以输入

conda info 来查询安装信息

输入conda list 可以查询你现在安装了哪些库,常用的python, numpy, scipy名列其中。如果你还有什么包没有安装上,可以运行

conda install ***  来进行安装(***代表包名称),如果某个包版本不是最新的,运行 conda update *** 就可以了。

五、caffe的安装

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/14806.html