选择排序是一种简单直观的排序算法,其基本原理如下:对于给定的一组记录,经过第一轮比较后得到最小的记录,然后将该记录的位置与第一个记录的位置交换;接着对不包括第一个记录以外的其他记录进行第二次比较,得到最小记录并与第二个位置记录交换;重复该过程,知道进行比较的记录只剩下一个为止。
5.2.复杂度分析从简单选择排序的过程来看,它最大的特点是交换移动数据次数相当少,这样就节约了相应的时间。分析它的时间复杂度发现,无论是最好最差情况,其比较次数都是一样多,第 i 趟排序需要进行 n-i 次关键字比较,此时需要比较次,对于交换次数而言,当最好的时候,交换0次,最差的时候,也就是初始降时,交换次数为 n-1 次,基于最终的时间排序与交换次数总和,因此,总的时间复杂度依然为
。尽管与冒泡排序同为,但简单选择排序的性能要优于冒泡排序。 5.3.java实现
package MySort;
import java.util.Arrays;
public class MySortTest6 {
public static void main(String[] args) {
// 原始数据
int[] data = { 1, 3, 6, 2, 4, 8, 9, 5, 12 };
// 3.选择排序:直接选择排序
System.out.println("直接排序:\t" + Arrays.toString(chooseSort(data)));
}
// 3.选择排序:直接选择排序
private static int[] chooseSort(int[] data) {
// 循环次数
for (int i = 0; i < data.length; i++) {
// 逐个比较
for (int j = i + 1; j < data.length; j++) {
if (data[i] > data[j]) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
}
return data;
}
}
6.堆排序 6.1.基本思想 堆排序就是利用堆(假设利用大顶堆)进行排序的方法。它的基本思想是,将待排序的序列构造成一个大顶堆。此时,整个序列的最大值就是堆顶的根节点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的 n-1 个序列重新构造成一个堆,这样就会得到 n 个元素中次大的值。如此反复执行,便能得到一个有序序列了。
堆排序的实现需要解决的两个关键问题:
(1)将一个无序序列构成一个堆。
(2)输出堆顶元素后,调整剩余元素成为一个新堆。
堆排序的实现:
① 初始化操作:将R[1..n]构造为初始堆;
②每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
堆排序的运行时间主要耗费在初始构建堆和在重建堆时反复筛选上。在构建对的过程中,因为我们是完全二叉树从最下层最右边的非终端节点开始构建,将它与其孩子进行比较和若有必要的互换,对每个非终端节点来说,其实最多进行两次比较和互换操作,因此整个构建堆的时间复杂度为O(n)。
在正式排序时,第i次取堆顶记录重建堆需要用O(logi)的时间(完全二叉树的某个节点到根节点的距离为),并且需要取n-1次堆顶记录,因此,重建堆的时间复杂度为O(nlogn)。
所以总体来说,堆排序的时间复杂度为O(nlogn),由于堆排序对原始记录的状态并不敏感,因此它无论是最好、最坏和平均时间复杂度均为O(nlogn)。这在性能上显然要远远好过于冒泡、简单选择、直接插入的时间复杂度了。
空间复杂度上,它只有一个用来交换的暂存单元,也非常的不错。不过由于记录的比较与交换是跳跃式进行的,因此堆排序也是一种不稳定的排序方法。
另外,由于出事构建堆所需要的比较次数比较多,因此,他并不适合待排序序列个数较少的情况。
package MySort;
import java.util.Arrays;
public class MySortTest7 {
public static void main(String[] args) {
int[] data = { 1, 3, 6, 2, 4, 8, 9, 5, 12 };
// 3.选择排序:堆排序
System.out.println("堆排序:\t" + Arrays.toString(heapSort(data)));
}