数据结构与算法(一):带你了解时间复杂度和空间复杂度到底是什么?

求关注

带你了解时间复杂度和空间复杂度到底是什么?

1. 前言

算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。那么我们应该如何去衡量不同算法之间的优劣呢?

主要还是从算法所占用的「时间」和「空间」两个维度去考量。

时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。

空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述。

因此,评价一个算法的效率主要是看它的时间复杂度和空间复杂度情况。然而,有的时候时间和空间却又是「鱼和熊掌」,不可兼得的,那么我们就需要从中去取一个平衡点。

2. 算法的介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程

3. 排序的分类 3.1 内部排序

指将需要处理的所有数据都加载到内部存储器(内存)中进行排序。

3.2 外部排序法

数据量过大,无法全部加载到内存中,需要借助外部存储(文件等)进行排序。

3.3 常见的排序算法分类(见下图)

排序

4. 算法的时间复杂度 4.1 度量程序(算法)执行时间方法 4.1.1 事后统计的方法

这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较哪个算法速度更快。

4.1.2 事前估算的方法

因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。因此人们常常采用事前分析估算的方法
在编写程序前,依据统计方法对算法进行估算。一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:

(1) 算法采用的策略、方法

(2) 编译产生的代码质量

(3) 问题的输入规模

(4) 机器执行指令的速度。

通过分析某个算法的时间复杂度来判断哪个算法更优。

4.2 时间频度 4.2.1 基本介绍

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。 一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n)。

举例说明-基本案例

比如计算 1-1000 所有数字之和, 我们设计两种算法:

举例说明-基本案例

举例说明-忽略常数项

举例说明-忽略常数项

举例说明-忽略常数项

结论:
1) 2n+20 和 2n 随着 n 变大,执行曲线无限接近, 20 可以忽略
2) 3n+10 和 3n 随着 n 变大,执行曲线无限接近, 10 可以忽略

举例说明-忽略低次项

举例说明-忽略低次项

举例说明-忽略低次项

结论:
1) 2n^2+3n+10 和 2n^2 随着 n 变大, 执行曲线无限接近, 可以忽略 3n+10
2) n^2+5n+20 和 n^2 随着 n 变大,执行曲线无限接近, 可以忽略 5n+20

举例说明-忽略系数

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpgxfg.html