5G和AI会碰撞出什么样的火花呢?

本文学习和分享一篇综述文章,这篇文章是东南大学移动通信国家重点实验室主任、长江学者特聘教授尤肖虎教授2019年发表在《中国科学 信息科学》(《SCIENCE CHINA Information Sciences》)上关于AI助力5G的研究方向和范式的综述文章。

以下内容是经过翻译和精简整理得到的,与原文难免有些偏颇,但不会影响原文传递的主要思想和观点,如果想深入研究,可以自行查阅原文。

文章摘要
第五代移动网络(5G)等无线通信技术不仅将在未来十年提供1000倍的互联网流量,而且还将为整个行业提供支持物联网(IOT)技术的底层技术。与现有的移动通信技术相比,5G的应用更加多样化,相应的系统设计也更加复杂。人工智能技术的复兴提供了一种可能优于传统思想和性能的替代选择。因此,有必要确定、评估和研究与通过人工智能可以实现的贡献相关的典型和潜在的研究方向。为此,本研究在了解5G关键技术的基础上,首先梳理了5G技术与人工智能结合的几个有前景的研究方向,并重点提供了5G网络优化、资源优化配置、智能优化等设计模式、5G物理层统一加速、端到端物理层关节优化等。
关键词:5G移动通信、人工智能技术、网络优化、资源分配、端到端联合优化

一 引言 5G介绍

5G的三个典型应用为:增强移动宽带(eMBB)、大规模机器类型通信(mMTC)和超可靠低延迟通信(URLLC)(也称为关键任务通信)。这些应用为延迟、可靠性、连接和容量密度、系统频谱效率、能源效率和峰值吞吐量提出了新的性能标准,必须使用5G技术加以解决。

为了满足这些标准,大规模多输入多输出(MIMO)、新无线接入技术(RAT)、异构超加密网络(UDN)、信道编解码(例如极性码)和mmWave接入等是目前正在研究的关键技术。

此外,5G网络将不可避免地具有异构性,通过为特定应用量身定制的统一空中接口实现多种模式和需求。因此,涉及密集的Het-Net等架构,5G系统将通过云数据中心进行虚拟化和实现。网络切片将是5G网络的一个主要特点,包括使用新的空中接口,该接口旨在动态优化网络资源的分配,并有效利用频谱。

与现有的4G网络相比,5G新无线电(5G-NR)具有以下特点:

(1)采用大规模MIMO技术增强MIMO系统;

(2)对正交频分复用(OFDM)进行了完整的时隙结构和资源块(RB)分配,提出了更灵活的空中接口;

(3) 在不久的将来,将引入非正交多址(NOMA)以支持物联网(IoT);

(4)遵循以往的分布式天线系统,将无线功能分为分布式单元(DU)和中央单元(CU),并应用基于云计算的网络虚拟化和网络切片技术。

总的来说,5G网络将为更多的应用和服务定制供应机制,这使得它在复杂的配置问题和不断变化的服务需求方面更具挑战性。在5G之前,对通信系统的研究主要是为了获得令人满意的数据传输速率和支持的移动性管理。在5G时代,通信系统将获得与环境交互的能力,并将目标扩展到联合优化越来越多的关键性能指标(KPI),包括延迟、可靠性、连接密度和用户体验。同时,动态空中接口、虚拟化网络和网络切片等新功能引入了复杂的系统设计和优化要求,以应对与网络操作和维护相关的挑战。幸运的是,这些问题可以在人工智能领域考虑,人工智能提供了超越传统方法的全新概念和可能性。因此,人工智能最近在学术界和工业界都重新引起了通信领域的关注。3GPP和ITU都提出了涉及人工智能技术的5G研究项目。

AI介绍

人工智能研究领域诞生于20世纪50年代,经历了一些进步和挑战,近年来由于现代计算和数据存储技术的迅速发展而重新兴起。具体来说,人工智能学习技术为各种问题构建了一个通用的框架,并取得了巨大的进步,形成了跨领域的最新技术。

人工智能学习任务通常分为两大类,有监督和无监督学习,这取决于学习系统训练数据标签的可用性。另一种学习方法,强化学习,不完全是一种有监督的学习方法,也不完全是一种无监督的学习方法,因此它可以被列为一个新的类别。

监督学习 输入和期望输出的样本数据对被输入到计算机中,其目标是学习将输入与输出相关联的一般函数,并进一步检测未来输入的未知输出。有监督学习的一个典型例子如图1所示,其中标记的数据对被输入到多层深神经网络(DNN)中以训练DNN中节点之间的权重。训练离线进行,收敛后,训练的DNN将准备好识别和推断新的输入。

5G和AI会碰撞出什么样的火花呢?

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpgzjx.html