执行结果如下所示,此时我们可以看到,不仅可以可以把分布式id给创建处理,而且可以把这个创建的时间也打印出来,此时就可以满足我们的分布式id的创建了
6566884785623400448
分布式id-6566884785623400448生成的时间是:2019-08-13
6566884785812144128
分布式id-6566884785812144128生成的时间是:2019-08-13
6566884785812144129
分布式id-6566884785812144129生成的时间是:2019-08-13
6566884785812144130
分布式id-6566884785812144130生成的时间是:2019-08-13
6566884785812144131
分布式id-6566884785812144131生成的时间是:2019-08-13
6566884785812144132
分布式id-6566884785812144132生成的时间是:2019-08-13
6566884785816338432
分布式id-6566884785816338432生成的时间是:2019-08-13
6566884785816338433
分布式id-6566884785816338433生成的时间是:2019-08-13
6566884785816338434
分布式id-6566884785816338434生成的时间是:2019-08-13
6566884785816338435
分布式id-6566884785816338435生成的时间是:2019-08-13
缩小版Snowflake算法生成分布式id
因为Snowflake算法的极限是每毫秒的每一个节点生成4059个id值,也就是说每毫秒的极限是生成023*4059=4 152 357个id值,这样生成id值的速度对于twitter公司来说是很符合标准的(毕竟人家公司大嘛),但是对于咱们中小公司来说是不需要的,所以我们可以根据Snowflake算法来修改一下分布式id的创建,让每秒创建的id少一些,但是把可以使用的时间扩大一些
这里我看廖雪峰老师的文章之后,采用了53位作为分布式id值的位数,因为如果后端和前端的JavaScript打交道的话,由于JavaScript支持的最大整型就是53位,超过这个位数,JavaScript将丢失精度。因此,使用53位整数可以直接由JavaScript读取,而超过53位时,就必须转换成字符串才能保证JavaScript处理正确,所以我们的分布式id就用53位来生成
这53位里面,第一位还是0,然后剩下的52位,33位作为秒数,4位作为节点数,15位作为每一个节点在每一秒的生成序列值
33位的二进制111111111111111111111111111111111转换成10进制的秒就是8589934591,然后我们把 8589934591转换成时间就是2242-03-16,也就是说可以用220年的,足够我们的使用了
然后4位节点,所以最多就是4位的1111,也就是最多可以支持15个节点,
然后15位表示每一个节点每一秒自增序列值,这里最多就是10位的11111111111111111,也就是说每一个节点可以每一秒可以最多生成131071个不重复id值
这样算起来,就是说每一秒每一个节点生成131071个不重复的节点,所以极限就是每秒生成15*131071=1 966 065个分布式id,够我们在开发里面的日常使用了
所以代码就可以变成下面这样,这里主要讲一下下面的nextId()方法,
首先蓝色代码是获取当前秒,然后进行校验,就是把当前时间和上一个时间戳进行比较,如果当前时间比上一个时间戳要小,那就说明系统时钟回退,所以此时应该抛出异常
然后是下面的红色代码,首先如果是同一秒生成的,那么就把这一秒的生成序列id值一直增加,一直增加到131071个,如果在增加,那么下面的红色代码里面的sequence = (sequence + 1) & sequenceMask;的值就会是0,那么就会执行红色代码里面的tilNextMillis()方法进行阻塞,直到获取到下一秒继续执行
然后下面的绿色代码表示每一秒过去之后,都要把这个生成序列的id值都变成0,这样在新的一秒里面就可以在继续生成1到131071个分布式id值了
然后下面的黄色代码就是把咱们的秒,节点值,节点每秒生成序列id值加起来组成一个分布式id返回
package com.hello;
import java.text.SimpleDateFormat;
import java.util.Date;
public class Test {
/**
* 开始时间截 (1970-01-01)
*/
private final long twepoch = 0L;
/**
* 机器id,范围是1到15
*/
private final long workerId;
/**
* 机器id所占的位数,占4位
*/
private final long workerIdBits = 4L;
/**
* 支持的最大机器id,结果是15
*/
private final long maxWorkerId = ~(-1L << workerIdBits);
/**
* 生成序列占的位数
*/
private final long sequenceBits = 15L;
/**
* 机器ID向左移15位
*/
private final long workerIdShift = sequenceBits;
/**
* 生成序列的掩码,这里为最大是32767 (1111111111111=32767)
*/
private final long sequenceMask = ~(-1L << sequenceBits);
/**
* 时间截向左移19位(4+15)
*/
private final long timestampLeftShift = 19L;
/**
* 秒内序列(0~32767)
*/
private long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private long lastTimestamp = -1L;
public Test(long workerId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
this.workerId = workerId;
}
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized long nextId() {
//蓝色代码注释开始
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//蓝色代码注释结束
//红色代码注释开始
//如果是同一时间生成的,则进行秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//秒内序列溢出
if (sequence == 0) {
//阻塞到下一个秒,获得新的秒值
timestamp = tilNextMillis(lastTimestamp);
}
//时间戳改变,秒内序列重置
}
//红色代码注释结束
//绿色代码注释开始
else {
sequence = 0L;
}
//绿色代码注释结束
//上次生成ID的时间截
lastTimestamp = timestamp;
//黄色代码注释开始
//移位并通过或运算拼到一起组成53 位的ID
return ((timestamp - twepoch) << timestampLeftShift)
| (workerId << workerIdShift)
| sequence;
//黄色代码注释结束
}
/**
* 阻塞到下一个秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以秒为单位的当前时间
*
* @return 当前时间(秒)
*/
protected long timeGen() {
return System.currentTimeMillis()/1000L;
}
public static void parseId(long id) {
long second = id >>> 19;
System.err.println("分布式id-"+id+"生成的时间是:"+new SimpleDateFormat("yyyy-MM-dd").format(new Date(second*1000)));
}
public static void main(String[] args) {
Test idWorker = new Test(0);
for (int i = 0; i < 10; i++) {
long id = idWorker.nextId();
System.out.println(id);
parseId(id);
}
}
}