信道估计(channel estimation)图解——从SISO到MIMO原理介绍 (3)

在LTE的特定应用中,我们在OFDM符号中有多个测量点(多个参考信号)。这些测量点在频域上表示。因此,让我们如下重写信道矩阵以指示每个信道矩阵的测量点。

现在,假设您已经测量了整个OFDM符号上的H矩阵,那么您将拥有多个 \(H\) 矩阵,如下所示,每个矩阵都以一个特定的频率指示H矩阵。

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

现在你有了一个 \(H\) 矩阵数组。该阵列由四个不同的组组成,每个组用不同的颜色突出显示,如下所示。

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

当应用后处理算法时,该算法需要分别应用于这些组中的每一个。因此,为简单起见,我将 \(H\) 矩阵的数组重新排列为多个独立数组(在本例中为4个数组),如下所示。

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

对于这些数组中的每一个,我将进行如下所示的相同处理。(每个芯片组制造商都可以应用稍微不同的方法,但是总体思路是相似的)。在下面说明的方法中,数据(每个频点中的信道系数阵列)使用IFFT进行处理,这意味着将dta转换为时域,从而生成标记为(2)的时域数据阵列。实际上,这是特定信道路径的脉冲响应。然后,我们对该时域数据应用特定的过滤(或加窗)。在此示例中,将某个点的数据替换为零,并创建标记为(3)的结果。您可以应用更复杂的过滤器或窗口,而不是这种简单的调零。然后,通过将滤波后的信道脉冲数据转换回频域,

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

通过对所有四个阵列执行相同的过程,您可以获得“估计信道系数阵列”的四个阵列。从这四个阵列中,您可以按以下方式重建估计信道矩阵的阵列。

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

4.2 噪声的估计

使用此估算的信道矩阵,您可以使用以下公式估算每个点的噪声值。这与本页开头的原始系统方程式相同,除了将H矩阵替换为“估计的H”矩阵外,现在我们知道除噪声值以外的所有值。因此,通过插入所有已知值,我们可以在每个测量点计算(估计)噪声值。

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

如果将此方程式应用于所有测量点,则将获得所有测量点的噪声值,并从这些计算出的噪声值中获得噪声的统计属性。如上所述,此处计算出的每个单独的噪声值没有太大意义,因为该值不能直接应用于解码其他信号(非参考信号),但是这些噪声的统计特性对于确定噪声而言可能是非常有用的信息。渠道的性质。

信道估计(channel estimation)图解——从SISO到MIMO原理介绍

注意:如果您对在实际应用中如何使用此算法感兴趣,强烈建议阅读/尝试使用Ref [2]和[3]。

参考:

[1] srsLTE:\ srslte \ lib \ ch_estimation \ chest_dl.c-srslte_chest_dl_estimate_port()

[2] 信道估计(Mathworks,LTE工具箱)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpjzwf.html