100天搞定机器学习|Day15 朴素贝叶斯

Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意。

托马斯·贝叶斯 (Thomas Bayes),英国神学家、数学家、数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫;1742年成为英国皇家学会会员;1763年4月7日逝世。贝叶斯曾是对概率论与统计的早期发展有重大影响的两位(贝叶斯和布莱斯·帕斯卡Blaise Pascal)人物之一。

贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献。1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用。贝叶斯的《An essay towards solving a problem in the doctrine of chances》发表于1758年,贝叶斯所采用的许多术语被沿用至今。贝叶斯对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来,即贝叶斯定理。

一、回顾概率统计基础知识

独立事件:在一次实验中,一个事件的发生不会影响到另一事件发生的概率,二者没有任何关系。如果A1,A2,A3…An相互独立,则A1~ An同时发生的概率:

100天搞定机器学习|Day15 朴素贝叶斯

条件概率:指在A事件发生的条件下,事件B发生的概率,用符号表示:

100天搞定机器学习|Day15 朴素贝叶斯


100天搞定机器学习|Day15 朴素贝叶斯

全概率公式:如果事件A1、A2、A3…An 构成一个完备事件组,即它们两两互不相容,其和为全集Ω;并且P(Ai) > 0,则对任一试验B有:

100天搞定机器学习|Day15 朴素贝叶斯

其他概率基础,大家如有兴趣请移步:

二、贝叶斯定理

贝叶斯定理(Bayes’s Rule):如果有k个互斥且有穷个事件 B1,B2···,Bk,并且,P (B1) + P(B2) + · · · + P(Bk) = 1和一个可以观测到的事件A,那么有:

100天搞定机器学习|Day15 朴素贝叶斯

这就是贝叶斯公式,其中:

P(Bi) 为先验概率,即在得到新数据前某一假设的概率;

P(Bi|A) 为后验概率,即在观察到新数据后计算该假设的概率;

P(A|Bi)为似然度,即在该假设下得到这一数据的概率;

P(A)为标准化常量,即在任何假设下得到这一数据的概率。

证明起来也不复杂

1、根据条件概率的定义,在事件 B 发生的条件下事件 A 发生的概率为:

100天搞定机器学习|Day15 朴素贝叶斯

2、同样地,在事件 A 发生的条件下事件 B 发生的概率为:

100天搞定机器学习|Day15 朴素贝叶斯

3、结合这两个方程式,我们可以得到:

100天搞定机器学习|Day15 朴素贝叶斯

4、上式两边同除以 P(A),若P(A)是非零的,我们可以得到贝叶斯定理:

100天搞定机器学习|Day15 朴素贝叶斯

在B出现的前提下,A出现的概率等于A出现的前提下B出现的概率乘以A出现的概率再除以 B 出现的概率。通过联系 A 与 B,计算从一个事件发生的情况下另一事件发生的概率,即从结果上溯到源头(也即逆向概率)。

贝叶斯公式以及由此发展起来的一整套理论与方法,在概率统计中被称为贝叶斯学派,与概率学派有着完全不同思考问题方式。

频率学派:研究的是事件本身,所以研究者只能反复试验去逼近它从而得到结果。比如:想要计算抛掷一枚硬币时正面朝上的概率,我们需要不断地抛掷硬币,当抛掷次数趋向无穷时正面朝上的频率即为正面朝上的概率。

贝叶斯学派:研究的是观察者对事物的看法,所以你可以用先验知识和收集到的信息去描述他,然后用一些证据去证明它。还是比如抛硬币,当小明知道一枚硬币是均匀的,然后赋予下一次抛出结果是正面或反面都是50%的可信度(概率分布),可能是出于认为均匀硬币最常见这种信念,然后比如小明随机抛了1000次,发现结果正是这样,那么它就通过这些证据验证了自己的先验知识。(也有存在修改的时候,比如发现硬币的材质不一致,总之就是这么一个过程)

举个例子

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wppgfy.html