【高频 Redis 面试题】Redis 事务是否具备原子性?

一、Redis 事务的实现原理

一个事务从开始到结束通常会经历以下三个阶段:

1、事务开始

客户端发送 MULTI 命令,服务器执行 MULTI 命令逻辑。

服务器会在客户端状态(redisClient)的 flags 属性打开 REDIS_MULTI 标识,将客户端从非事务状态切换到事务状态。

void multiCommand(redisClient *c) { // 不能在事务中嵌套事务 if (c->flags & REDIS_MULTI) { addReplyError(c,"MULTI calls can not be nested"); return; } // 打开事务 FLAG c->flags |= REDIS_MULTI; addReply(c,shared.ok); } 2、命令入队

接着,用户可以在客户端输入当前事务要执行的多个命令。

当客户端切换到事务状态时,服务器会根据客户端发来的命令来执行不同的操作。

如果客户端发送的命令为 EXEC、DISCARD、WATCH、MULTI 四个命令的其中一个,那么服务器立即执行这个命令。

与此相反,如果客户端发送的命令是 EXEC、DISCARD、WATCH、MULTI 四个命令以外的其他命令,那么服务器并不立即执行这个命令。

首先检查此命令的格式是否正确,如果不正确,服务器会在客户端状态(redisClient)的 flags 属性打开 REDIS_MULTI 标识,并且返回错误信息给客户端。

如果正确将这个命令放入一个事务队列里面,然后向客户端返回 QUEUED 回复。

我们先看看事务队列是如何实现的?

每个 Redis 客户端都有自己的事务状态,对应的是客户端状态(redisClient)的 mstate 属性。

typeof struct redisClient{ // 事务状态 multiState mstate; }redisClient;

事务状态(mstate)包含一个事务队列(FIFO 队列),以及一个已入队命令的计数器。

/* * 事务状态 */ typedef struct multiState { // 事务队列,FIFO 顺序 multiCmd *commands; /* Array of MULTI commands */ // 已入队命令计数 int count; /* Total number of MULTI commands */ int minreplicas; /* MINREPLICAS for synchronous replication */ time_t minreplicas_timeout; /* MINREPLICAS timeout as unixtime. */ } multiState;

事务队列是一个 multiCmd 类型数组,数组中每个 multiCmd 结构都保存了一个如入队命令的相关信息:指向命令实现函数的指针,命令的参数,以及参数的数量。

/* * 事务命令 */ typedef struct multiCmd { // 参数 robj **argv; // 参数数量 int argc; // 命令指针 struct redisCommand *cmd; } multiCmd; 最后我们再看看入队列的源码: /* Add a new command into the MULTI commands queue * * 将一个新命令添加到事务队列中 */ void queueMultiCommand(redisClient *c) { multiCmd *mc; int j; // 为新数组元素分配空间 c->mstate.commands = zrealloc(c->mstate.commands, sizeof(multiCmd)*(c->mstate.count+1)); // 指向新元素 mc = c->mstate.commands+c->mstate.count; // 设置事务的命令、命令参数数量,以及命令的参数 mc->cmd = c->cmd; mc->argc = c->argc; mc->argv = zmalloc(sizeof(robj*)*c->argc); memcpy(mc->argv,c->argv,sizeof(robj*)*c->argc); for (j = 0; j < c->argc; j++) incrRefCount(mc->argv[j]); // 事务命令数量计数器增一 c->mstate.count++; }

当然了,还有我们上面提到的,如果命令入队出错时,会打开客户端状态的 REDIS_DIRTY_EXEC 标识。

/* Flag the transacation as DIRTY_EXEC so that EXEC will fail. * * 将事务状态设为 DIRTY_EXEC ,让之后的 EXEC 命令失败。 * * Should be called every time there is an error while queueing a command. * * 每次在入队命令出错时调用 */ void flagTransaction(redisClient *c) { if (c->flags & REDIS_MULTI) c->flags |= REDIS_DIRTY_EXEC; } 3、事务执行

客户端发送 EXEC 命令,服务器执行 EXEC 命令逻辑。

如果客户端状态的 flags 属性不包含 REDIS_MULTI 标识,或者包含 REDIS_DIRTY_CAS 或者 REDIS_DIRTY_EXEC 标识,那么就直接取消事务的执行。

否则客户端处于事务状态(flags 有 REDIS_MULTI 标识),服务器会遍历客户端的事务队列,然后执行事务队列中的所有命令,最后将返回结果全部返回给客户端;

void execCommand(redisClient *c) { int j; robj **orig_argv; int orig_argc; struct redisCommand *orig_cmd; int must_propagate = 0; /* Need to propagate MULTI/EXEC to AOF / slaves? */ // 客户端没有执行事务 if (!(c->flags & REDIS_MULTI)) { addReplyError(c,"EXEC without MULTI"); return; } /* Check if we need to abort the EXEC because: * * 检查是否需要阻止事务执行,因为: * * 1) Some WATCHed key was touched. * 有被监视的键已经被修改了 * * 2) There was a previous error while queueing commands. * 命令在入队时发生错误 * (注意这个行为是 2.6.4 以后才修改的,之前是静默处理入队出错命令) * * A failed EXEC in the first case returns a multi bulk nil object * (technically it is not an error but a special behavior), while * in the second an EXECABORT error is returned. * * 第一种情况返回多个批量回复的空对象 * 而第二种情况则返回一个 EXECABORT 错误 */ if (c->flags & (REDIS_DIRTY_CAS|REDIS_DIRTY_EXEC)) { addReply(c, c->flags & REDIS_DIRTY_EXEC ? shared.execaborterr : shared.nullmultibulk); // 取消事务 discardTransaction(c); goto handle_monitor; } /* Exec all the queued commands */ // 已经可以保证安全性了,取消客户端对所有键的监视 unwatchAllKeys(c); /* Unwatch ASAP otherwise we'll waste CPU cycles */ // 因为事务中的命令在执行时可能会修改命令和命令的参数 // 所以为了正确地传播命令,需要现备份这些命令和参数 orig_argv = c->argv; orig_argc = c->argc; orig_cmd = c->cmd; addReplyMultiBulkLen(c,c->mstate.count); // 执行事务中的命令 for (j = 0; j < c->mstate.count; j++) { // 因为 Redis 的命令必须在客户端的上下文中执行 // 所以要将事务队列中的命令、命令参数等设置给客户端 c->argc = c->mstate.commands[j].argc; c->argv = c->mstate.commands[j].argv; c->cmd = c->mstate.commands[j].cmd; /* Propagate a MULTI request once we encounter the first write op. * * 当遇上第一个写命令时,传播 MULTI 命令。 * * This way we'll deliver the MULTI/..../EXEC block as a whole and * both the AOF and the replication link will have the same consistency * and atomicity guarantees. * * 这可以确保服务器和 AOF 文件以及附属节点的数据一致性。 */ if (!must_propagate && !(c->cmd->flags & REDIS_CMD_READONLY)) { // 传播 MULTI 命令 execCommandPropagateMulti(c); // 计数器,只发送一次 must_propagate = 1; } // 执行命令 call(c,REDIS_CALL_FULL); /* Commands may alter argc/argv, restore mstate. */ // 因为执行后命令、命令参数可能会被改变 // 比如 SPOP 会被改写为 SREM // 所以这里需要更新事务队列中的命令和参数 // 确保附属节点和 AOF 的数据一致性 c->mstate.commands[j].argc = c->argc; c->mstate.commands[j].argv = c->argv; c->mstate.commands[j].cmd = c->cmd; } // 还原命令、命令参数 c->argv = orig_argv; c->argc = orig_argc; c->cmd = orig_cmd; // 清理事务状态 discardTransaction(c); /* Make sure the EXEC command will be propagated as well if MULTI * was already propagated. */ // 将服务器设为脏,确保 EXEC 命令也会被传播 if (must_propagate) server.dirty++; handle_monitor: /* Send EXEC to clients waiting data from MONITOR. We do it here * since the natural order of commands execution is actually: * MUTLI, EXEC, ... commands inside transaction ... * Instead EXEC is flagged as REDIS_CMD_SKIP_MONITOR in the command * table, and we do it here with correct ordering. */ if (listLength(server.monitors) && !server.loading) replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc); } 二、为什么很多人说 Redis 事务为何不支持原子性? 1、Redis 事务不支持事务回滚机制

Redis 事务执行过程中,如果一个命令执行出错,那么就返回错误,然后还是会接着继续执行下面的命令。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwwfw.html