数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图、柱状图、线图等图表制作是一个数据分析师必备的技能。Python有两个比较出色的图表制作框架,分别是Matplotlib和Pyechart。本文主要讲述使用Matplotlib制作各种数据图表。
Matplotlib是最流行的用于绘制2D数据图表的Python库,能够在各种平台上使用,可以绘制散点图、柱状图、饼图等。
1、柱状图
是一种以长方形或长方体的高度为变量的表达图形的统计报告图,由一系列高度不等的纵向条纹表示数据分布的情况,用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。柱状图可以用来比较数据之间的多少,可以用来观察某一事件的变化趋势,柱状图亦可横向排列,或用多维方式表达。
实现代码:
# 导入绘图模块
import
matplotlib.pyplot as plt
# 构建数据
sales = [7125,12753,13143,8635]
# 中文乱码的处理,rcParams也可以用于设置图的分辨率,大小等信息
plt.rcParams['font.sans-serif'] =['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 绘图,第一个参数是x轴的数据,第二个参数是y轴的数据,第三个参数是柱子的大小,默认值是1(值在0到1之间),color是柱子的颜色,alpha是柱子的透明度
plt.bar(range(4), sales, 0.4,color='r', alpha = 0.8)
# 添加轴标签
plt.ylabel('销量')
# 添加标题
plt.title('水果2018年度销量')
# 添加刻度标签
plt.xticks(range(4),['苹果','香蕉','梨','猕猴桃'])
# 设置Y轴的刻度范围
plt.ylim([5000,15000])
# 为每个条形图添加数值标签
for x,y in enumerate(sales):
plt.text(x,y+100,'%s' %y,ha='center')
# 显示图形
plt.show()
效果图:
只需绘制柱状图的函数bar()改成barh()就可以将柱状图长方形或长方体从垂直方向变为水平方向。
实现代码:
# 导入绘图模块
import
matplotlib.pyplot as plt
# 构建数据
sales = [7125,12753,13143,8635]
# 中文乱码的处理
plt.rcParams['font.sans-serif'] =['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = ['苹果','香蕉','梨','猕猴桃']
# 绘图
plt.barh(range(4), sales, 0.4,color='r', alpha = 0.8)
# 添加轴标签
plt.ylabel('销量')
# 添加标题
plt.title('水果2018年度销量')
# 添加刻度标签
plt.yticks(range(4),['苹果','香蕉','梨','猕猴桃'])
# 设置Y轴的刻度范围
plt.xlim([5000,15000])
# 为每个条形图添加数值标签
for x,y in enumerate(sales):
plt.text(y+0.2,x,'%s' %y,va='center')
# 显示图形
plt.show()
效果图:
除了bar()函数变成barh()之外。还有其他几个地方要做修改,在给每个条形图添加数值标签时,将ha='center'改为va='center',将添加x轴标签的方法从xlabel改为ylabel。
柱状图和折线图混合使用
柱状图可以和折线图混合使用,用来表示某一个数据的变化趋势,下面是例子的柱状图表示水果的年度销量,折线图表示水果1月份的销量。
代码:
# 导入绘图模块
import matplotlib.pyplot as plt
jan_sales = [3010,4029,5021,3056]
# 构建数据
sales = [7125,12753,13143,8635]
# 中文乱码的处理
plt.rcParams['font.sans-serif'] =['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = ['苹果','香蕉','梨','猕猴桃']
plt.plot(x,jan_sales,'r')# 折线 1 x 2 y 3 color
plt.plot(x,jan_sales,'g',lw=5)# 4 line w
# 绘图
plt.bar(range(4), sales, 0.4,color='b', alpha = 0.8)
# 添加轴标签
plt.ylabel('销量')
# 添加标题
plt.title('水果2018年度销量')
# 添加刻度标签
plt.xticks(range(4),['苹果','香蕉','梨','猕猴桃'])
# 设置Y轴的刻度范围
plt.ylim([2000,15000])
# 为每个条形图添加数值标签
for x,y in enumerate(sales):
plt.text(x,y+100,'%s' %y,ha='center')
# 显示图形
plt.show()
效果图:
2、折线图
折线图主要用于表示数据变化的趋势。折线图是直线将不同的点连接起来。
# 导入绘图模块
import matplotlib.pyplot as plt
#构建数据
jan_sales = [3010,4029,5021,3056]
# 中文乱码的处理
plt.rcParams['font.sans-serif'] =['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = ['苹果','香蕉','梨','猕猴桃']
#第一个参数是x轴,第二参数时y轴数据,第三个参数是线的颜色,第二个参数是线条的粗细
plt.plot(x,jan_sales,'r',lw=5)# 4 line w
# 添加标题
plt.title('水果2018年度1月份销量图')
plt.ylim([2000,15000])
# 为每个点添加数值标签
for x,y in enumerate(jan_sales):
plt.text(x,y+100,'%s' %y,ha='center')
# 显示图形
plt.show()
效果图:
折线图通过调用plot()方法绘制。