1.1.1 hive是什么?
Hive是基于 Hadoop 的一个数据仓库工具:
1. hive本身不提供数据存储功能,使用HDFS做数据存储;
2. hive也不分布式计算框架,hive的核心工作就是把sql语句翻译成MR程序;
3. hive也不提供资源调度系统,也是默认由Hadoop当中YARN集群来调度;
4. 可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。
1.1.2 hive和Hadoop关系Hive利用HDFS存储数据,利用MapReduce查询数据,聚合函数需要经过MapReduce,非聚合函数直接读取hdfs块信息,不通过MapReduce。
1.1.3 hive特点可以将结构化的数据文件映射为一张数据库表(二维表),并提供类SQL查询功能
可以将sql语句转换为MapReduce任务进行运行。Hive 将用户的HiveQL 语句通过解释器转换为MapReduce 作业提交到Hadoop 集群上,Hadoop 监控作业执行过程,然后返回作业执行结果给用户。
Hive 在加载数据过程中不会对数据进行任何的修改,只是将数据移动到HDFS 中Hive 设定的目录下,因此,Hive 不支持对数据的改写和添加,所有的数据都是在加载的时候确定的。
Hive的适应场景:只适合做海量离线数据的统计分析。
Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile,RCFILE等)
只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。
1.1.4 hive数据的存储db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
table:在hdfs中表现所属db目录下一个文件夹
external table:与table类似,不过其数据存放位置可以在任意指定路径
partition:在hdfs中表现为table目录下的子目录
bucket:在hdfs中表现为同一个表目录下根据hash散列之后的多个文件
1.1.5 Hive 体系结构
1.1.6 hive的架构原理
Driver是核心,Driver可以解析语法,最难的就是解析sql的语法,只要把SQL的语法解析知道怎么做了,它内部用MapReduce模板程序,它很容易把它组装起来,比如做一个join操作,最重要的是识别语法,认识你的语法,知道你语法有什么东西,解析出来会得到一个语法树,根据一些语法树,去找一些MapReduce模板程序,把它组装起来。
例如:有二个表去join,内部有一个优化机制,有一个默认值,如果小表小于默认值,就采用map—join ,如果小表大于默认值,就采用reduce——join(其中map——join是先把小表加载到内存中),组装时候就是输入一些参数:比如:你的输入数据在哪里,你的表数据的分隔符是什么,你的文件格式是什么:然而这些东西是我们建表的时候就指定了,所以这些都知道了,程序就可以正常的跑起来。
Hive有了Driver之后,还需要借助Metastore,Metastore里边记录了hive中所建的:库,表,分区,分桶的信息,描述信息都在Metastore,如果用了MySQL作为hive的Metastore:需要注意的是:你建的表不是直接建在MySQL里,而是把这个表的描述信息放在了MySQL里,而tables表,字段表是存在HDFS上的hive表上,hive会自动把他的目录规划/usr/hive/warehouse/库文件/库目录/表目录,你的数据就在目录下
1.1.7 内外表内部表在删除表的时候,会删除元数据和数据;外部表在删除表的时候,只删除元数据,不删除数据
内部表和外部表使用场景:
一般情况来说,如果数据只交给hive处理,那么一般直接使用内部表;
如果数据需要多个不同的组件进行处理,那么最好用外部表,一个目录的数据需要被spark、hbase等其他组件使用,并且hive也要使用,那么该份数据通过创建一张临时表为外部表,然后通过写HQL语句转换该份数据到hive内部表中
1.1.8 分桶分桶操作:按照用户创建表时指定的分桶字段进行hash散列,跟MapReduce中的HashPartitioner的原理一模一样。
MapReduce中:按照key的hash值去模除以reductTask的个数;Hive中:按照分桶字段的hash值去模除以分桶的个数
hive分桶操作的效果:把一个文件按照某个特定的字段和桶数散列成多个文件好处:
1、方便抽样;
2、提高join查询效率
1.1.9 Hive分区