(1)ReentrantLock有哪些优点?
(2)ReentrantLock有哪些缺点?
(3)ReentrantLock是否可以完全替代synchronized?
简介synchronized是Java原生提供的用于在多线程环境中保证同步的关键字,底层是通过修改对象头中的MarkWord来实现的。
ReentrantLock是Java语言层面提供的用于在多线程环境中保证同步的类,底层是通过原子更新状态变量state来实现的。
既然有了synchronized的关键字来保证同步了,为什么还要实现一个ReentrantLock类呢?它们之间有什么异同呢?
ReentrantLock VS synchronized直接上表格:(手机横屏查看更方便)
功能 ReentrantLock synchronized可重入 支持 支持
非公平 支持(默认) 支持
加锁/解锁方式 需要手动加锁、解锁,一般使用try..finally..保证锁能够释放 手动加锁,无需刻意解锁
按key锁 不支持,比如按用户id加锁 支持,synchronized加锁时需要传入一个对象
公平锁 支持,new ReentrantLock(true) 不支持
中断 支持,lockInterruptibly() 不支持
尝试加锁 支持,tryLock() 不支持
超时锁 支持,tryLock(timeout, unit) 不支持
获取当前线程获取锁的次数 支持,getHoldCount() 不支持
获取等待的线程 支持,getWaitingThreads() 不支持
检测是否被当前线程占有 支持,isHeldByCurrentThread() 不支持
检测是否被任意线程占有 支持,isLocked() 不支持
条件锁 可支持多个条件,condition.await(),condition.signal(),condition.signalAll() 只支持一个,obj.wait(),obj.notify(),obj.notifyAll()
对比测试
在测试之前,我们先预想一下结果,随着线程数的不断增加,ReentrantLock(fair)、ReentrantLock(unfair)、synchronized三者的效率怎样呢?
我猜测应该是ReentrantLock(unfair)> synchronized > ReentrantLock(fair)。
到底是不是这样呢?
直接上测试代码:(为了全面对比,彤哥这里把AtomicInteger和LongAdder也拿来一起对比了)
public class ReentrantLockVsSynchronizedTest { public static AtomicInteger a = new AtomicInteger(0); public static LongAdder b = new LongAdder(); public static int c = 0; public static int d = 0; public static int e = 0; public static final ReentrantLock fairLock = new ReentrantLock(true); public static final ReentrantLock unfairLock = new ReentrantLock(); public static void main(String[] args) throws InterruptedException { System.out.println("-------------------------------------"); testAll(1, 100000); System.out.println("-------------------------------------"); testAll(2, 100000); System.out.println("-------------------------------------"); testAll(4, 100000); System.out.println("-------------------------------------"); testAll(6, 100000); System.out.println("-------------------------------------"); testAll(8, 100000); System.out.println("-------------------------------------"); testAll(10, 100000); System.out.println("-------------------------------------"); testAll(50, 100000); System.out.println("-------------------------------------"); testAll(100, 100000); System.out.println("-------------------------------------"); testAll(200, 100000); System.out.println("-------------------------------------"); testAll(500, 100000); System.out.println("-------------------------------------"); // testAll(1000, 1000000); System.out.println("-------------------------------------"); testAll(500, 10000); System.out.println("-------------------------------------"); testAll(500, 1000); System.out.println("-------------------------------------"); testAll(500, 100); System.out.println("-------------------------------------"); testAll(500, 10); System.out.println("-------------------------------------"); testAll(500, 1); System.out.println("-------------------------------------"); } public static void testAll(int threadCount, int loopCount) throws InterruptedException { testAtomicInteger(threadCount, loopCount); testLongAdder(threadCount, loopCount); testSynchronized(threadCount, loopCount); testReentrantLockUnfair(threadCount, loopCount); // testReentrantLockFair(threadCount, loopCount); } public static void testAtomicInteger(int threadCount, int loopCount) throws InterruptedException { long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { for (int j = 0; j < loopCount; j++) { a.incrementAndGet(); } countDownLatch.countDown(); }).start(); } countDownLatch.await(); System.out.println("testAtomicInteger: result=" + a.get() + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start)); } public static void testLongAdder(int threadCount, int loopCount) throws InterruptedException { long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { for (int j = 0; j < loopCount; j++) { b.increment(); } countDownLatch.countDown(); }).start(); } countDownLatch.await(); System.out.println("testLongAdder: result=" + b.sum() + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start)); } public static void testReentrantLockFair(int threadCount, int loopCount) throws InterruptedException { long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { for (int j = 0; j < loopCount; j++) { fairLock.lock(); // 消除try的性能影响 // try { c++; // } finally { fairLock.unlock(); // } } countDownLatch.countDown(); }).start(); } countDownLatch.await(); System.out.println("testReentrantLockFair: result=" + c + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start)); } public static void testReentrantLockUnfair(int threadCount, int loopCount) throws InterruptedException { long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { for (int j = 0; j < loopCount; j++) { unfairLock.lock(); // 消除try的性能影响 // try { d++; // } finally { unfairLock.unlock(); // } } countDownLatch.countDown(); }).start(); } countDownLatch.await(); System.out.println("testReentrantLockUnfair: result=" + d + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start)); } public static void testSynchronized(int threadCount, int loopCount) throws InterruptedException { long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { for (int j = 0; j < loopCount; j++) { synchronized (ReentrantLockVsSynchronizedTest.class) { e++; } } countDownLatch.countDown(); }).start(); } countDownLatch.await(); System.out.println("testSynchronized: result=" + e + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start)); } }运行这段代码,你会发现结果大大出乎意料,真的是不测不知道,一测吓一跳,运行后发现以下规律:
随着线程数的不断增加,synchronized的效率竟然比ReentrantLock非公平模式要高!
彤哥的电脑上大概是高3倍左右,我的运行环境是4核8G,java版本是8,请大家一定要在自己电脑上运行一下,并且最好能给我反馈一下。
彤哥又使用Java7及以下的版本运行了,发现在Java7及以下版本中synchronized的效率确实比ReentrantLock的效率低一些。
总结(1)synchronized是Java原生关键字锁;
(2)ReentrantLock是Java语言层面提供的锁;
(3)ReentrantLock的功能非常丰富,解决了很多synchronized的局限性;