巧用机器学习定位云服务器故障

随着腾讯云业务的扩大,母机数量越来越多。为减少人力并实现母机故障的自动化定位,本文尝试利用机器学习算法,通过对历史故障母机的日志数据学习,训练模型实现自动化分析定位母机故障原因。

背景

对于每一单母机故障我们都需要定位出背后真实的故障原因,以便对相应的部件进行更换以及统计各种部件故障率的情况,因此故障定位和分析消耗的人力也越来越多。希望能借助机器学习的方法对历史故障母机的日志数据进行学习,沉淀出一些模型出来实现自动化的分析新的母机故障的原因,进而提高母机工单的处理效率解放人力,同时也能分析出故障的一些规律,进而实现对故障的预测等。

目标

1、对母机宕机故障进行自动化的分析,准确定位故障原因;

2、当故障分类准确率达到足够准确之后,能够不需要人工参与,实现自动化结单;

3、实时流式处理母机的各种数据,实现部分故障的预测。

数据

1、dmesg :机器宕机前的最后一屏,含有netconsole数据;

2、mcelog :系统检查到硬件错误产生的日志;

3、sel :系统事件日志,是服务器传感器收集数据发现异常产生的日志。

方法步骤

主要步骤包括数据筛选、数据清洗、文本向量化、模型构建、结果分析等。

数据筛选

1)查看三类日志,分析是否每一种日志对故障定位都有存价值。剔除无价值的日志;

2)根据业务需求,选择特定的故障类别。因为某些故障的工单数量特别少,难以建立机器学习模型做分类;

3)保留三种日志不全为空的故障工单,完全无记录的工单是无法利用的;

4)根据工单编号ticket_id将日志及故障工单整合,工单和母机应该是一一对应的。

数据清洗

1)剔除特殊符号'#', '<', '>', '&', '@','!', '(', ')', '*', '_'等;

2)剔除日志的无用信息,如数字格式和英文格式的;

3)日志分开清洗,当不同日志的格式不一致时,需要区分对待分开清洗。

文本向量化

日志数据一般为文本数据,在构建文档分类模型时,需要将文本型数据转化成数值型数据。文本向量化(也叫做特征权重计算)常用以下三种方法。

1)布尔权重(Boolean vector),是最简单的权重计算方法。如果某特征词在文本中出现,其权重即为1,;不出现,即为0.这一简单粗暴的方法容易丢失文本内部具体信息,效果略差。但适用于一些采用二分类的模型,比如决策树和概率分类器。

2)频度权值(term frequence),是最直观的权重计算方法。单词在文本中出现的次数即为频度权重。这种方法的思想是,出现次数越多的特征单词,其重要性越大。

img

3)Tf-idf(Term Frequency-Inverse Document Frequency, 词频-逆文件频率),是应用最广泛的权值计算方法。单词在一条工单的日志中出现次数越多, 同时在所有工单中出现次数越少, 越能够代表该故障工单。

相比于频度权值,引入了IDF。IDF的主要思想是:如果包含词条t的文档越少, IDF越大,则说明词条具有很好的类别区分能力。计算公式如下,分母之所以要加1,是为了避免分母为0

img

img

参考示例:

模型构建

在已有数据(标记)的基础上构造出一个分类函数/分类模型, 即为一个决策面。

img

1)数据划分:随机分层抽样,划分训练集(70%)用于构建模型,测试集(30%)用于验证模型效果;

2)数据预处理:数据整合、数据清洗、文本分词等过程在训练集和测试集上是同样的处理方式,以确保最后的干净的训练集和测试数据的格式是统一的;

3)文本向量化:采用tf-idf将文本向量化,选择l2正则化,结合文档频率df和最大词频tf进行特征选择,选出若干个关键词;设置停用词['is', 'not', 'this', 'the', 'do', 'in']等;

4)模型构建:选取分类问题常用的算法构建模型,构建模型过程中不断参数调优,构建最佳的模型。

img

注:对于数量特别少的故障类型,如果依靠专家知识分析已有的工单日志能够一一正确区分的话,那么可以人为地抽象出独一无二的故障特征,并编写模块实现自动化分类。

结果分析

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpzysx.html