郭律: 论机器学习平台与人工智能的关系

郭律,腾讯高级产品经理,腾讯云AI基础产品中心高级产品经理、解决方案架构师。主导腾讯智能钛TI-ONE(可视化机器学习平台)和TI-S(自动机器学习平台)两个产品的设计工作。从上海交通大学模式识别与智能系统专业博士毕业后,先后就职于IBM、普华永道从事IT架构、咨询方面的工作,对机器学习与金融、零售等业务场景的结合具有深刻理解,帮助学员掌握如何利用工具解决实际业务中面临的机器学习问题。

众所周知,现阶段的人工智能特别热门,研究人员也都想进入到这一领域,人工智能究竟是什么?我们有一个形象的比喻来说明什么叫做人工智能。

img

人工智能是这样,把米煮熟成饭的过程就是机器学习的过程,米是大数据,而饭就是人工智能。概括为一句话就是,将海量数据通过机器学习的手段来进行处理最后形成模型的过程就是人工智能。说到具体的例子,阿尔法狗的海量数据来自于各种各样的棋谱,通过机器学习成为一个下棋的人工智能。

机器学习说起来是一个词,其实背后有很多的事情要做,比如预处理、特征抽取、数据建模、模型评估等等。在建模过程中,除了调参选算法之外还有很多重要环节。在这个过程当中比较重要的一环是特征工程,一个模型好不好取决于特征工程做的好不好。

img

人工智能为什么这么火?相比于传统的商业智能(BI),人工智能更加精准。,以往的商业智能实现了对大数据的分析和处理,不同之处在于BI主要是通过人对数据的规则进行发现,AI是通过机器对数据的规则进行发现。我们同行里面有一个专家曾经说过,当规则超过1千万条,机器是可以超过专家的。这句话就是讲机器学习的特点就是精准。

img

AI通过机器学习挖掘数据里面的规则,效果比人做的更精准,而想用AI解决问题有4个约束条件。

第一个条件是业务场景。我们现阶段的人工智能不是强人工智能,并不能像科幻电影里一样可以解决任何问题。能够用机器学习解决问题的前提之一,是把业务问题转化为机器学习的建模问题,这样的问题可以用AI解决,所以业务场景是特别重要的一点。

第二个条件是海量数据。我们现在的机器学习,其原理是基于统计来学习数据中的规则。我们根据数据历史,基于统计发现其中规律,然后再将这些规律用于未来的数据预测。在历史数据里发现规则,需要海量的数据,这些海量数据应该是特征丰富、不重复,高质量的数据。

第三个条件是人才。这涉及到做算法人才、把算法在工程中实现的人才、产品化的人才以及将AI和业务系统集成的人才,这些人都属于AI人才。

第四个条件是技术能力。包含了计算资源、存储、网络以及和业务系统的集成。AI如果不能跟企业业务系统集成在一起是没有业务价值的。

img

刚才说的是机器学习的4个要素,接下来举例说明这4个要素在不同场景当中的体现。

在风控领域,海量数据包括客户交易数据、黑名单数据、客户数据、客户账户数据等等。这些数据都为我们提供各种维度的特征。我们用AI做风控,例如用AI判断信用卡交易是不是欺诈交易,或者信用卡催收时,判断一个客户的还款意愿是否强烈,这些问题可以转化为回归或者是分类问题。用这样的方式,把金融风控领域里的一些业务场景转化为一个系列具体的、可以通过机器学习建模来解决的技术问题。

img

在营销领域,海量数据包括客户画像、客户行为,商品目录,营销活动数据、营销成果数据(如历史上把某一类商品推销给某些客户,成功或者没有成功)等等,我们把这些数据送给机器去学习,哪种商品推给哪类客户比较容易成功,哪种不容易成功,这是我们要做的事情。具体到业务问题,例如说沉睡唤醒,在银行和电商有很多客户都存在开户后可能两三年再也没有业务的情况,就属于沉睡客户,如果通过一些推销手段,如给你发短信或者推荐促销活动,看能不能让客户重新在银行或电商活跃起来;又如商品个性化推荐,很多人在京东买手机以后,京东会推荐手机膜、耳机、储存卡等商品,这些推荐会根据其他用户选择或该用户购买历史以及跟该商品有关联的其他商品做推荐。

img

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgdpwf.html