MLIR算子量化Quantization
本文概述了MLIR量化系统的设计。虽然术语“量化”是高度过载的,用于将浮点计算转换为以整数数学表示,适配的变量进行推理的技术的相当窄的范围,如低位深度推理引擎(如TFLite)所支持的,各种加速器硬件和许多DSP。
很大程度上受到了本文所采用的方法的启发,其中包含了许多扩展和修改。它具体记录了MLIR在这一主题上的立场,而不是一般性的参考。
Uniform quantization均匀量子化
MLIR支持的主要量化机制,通过实数线上的等间距点,来表示不动点和仿射变换。
此外,该方案可以应用于:
•每层per-layer:应用于目标类型中的每个值。
•每轴per-axis(也称为每通道):沿张量类型的特定轴,分别应用于每个索引。
per-layer : Applying to every value within the target type.
per-axis (also called per-channel) : Applying individually to each index along a specific axis of a tensor type.
定点值
定点值是实数除以刻度。将实数除以的结果称为标度值。
The $$ real_value = scaled_value * scale $$
缩放可以解释为相邻缩放值之间的距离(以实单位表示)。例如,如果标度为$$\pi$$,则具有此标度的定点值只能表示$$\pi$$的倍数,而不能表示两者之间的值。将任意实数转换为给定值的固定点值的最大舍入误差$$ scale $$ is $$ \frac{scale}{2} $$。
继续上一示例,当$$ scale = \pi $$, 最大舍入误差为$$ \frac{\pi}{2} $$.
可以对具有不同比例的缩放值执行乘法,使用与实值乘法相同的算法(注意,乘积缩放值具有$$ scale_{product} = scale_{left \mbox{ } operand} * scale_{right \mbox{ } operand} $$).
可以对缩放值执行加法,只要具有相同的缩放比例,使用相同的实值加法算法。在计算机上有符号整数表示缩放值,并对这些有符号整数执行算子运算变得很方便,因为结果将是正确的缩放值。
Affine values
从数学上讲,仿射值是将实值零点加到标度值上的结果。或者(等价地),从仿射值中减去一个零点得到一个缩放值:
$$ real_value = scaled_value * scale = (affine_value - zero_point) * scale $$
从本质上说,仿射值是缩放值的某个常量的移动。算术(即加法、减法、乘法、除法)通常不能直接对仿射值执行;它们必须首先转换为等效的缩放值。
如上所述,使用仿射值的目的,更有效地表示在计算过程中实际遇到的实际值。将遇到的实数值不是围绕实数零对称的。假设在计算过程中遇到实零,应表示为实零。
存储由有符号整数表示的缩放值是低效的,因为某些有符号整数永远不会被使用。实际上,与这些有符号整数对应的位模式将被浪费。
为了用整数值仿射值精确地表示实零,零点必须是最小仿射值和最大仿射值(含)之间的整数。例如,给定一个由8位无符号整数表示的仿射值,我们有:$$0\leq zero\u point\leq 255$$。这一点很重要,因为在深度神经网络的卷积运算中,经常需要将输入和输出归零,所以零必须是可精确表示的,否则结果会有偏差。
Relation
实值、固定点值和仿射值通过以下等式进行关联,该等式演示了如何将一种类型的数字转换为另一种类型:
$$ real_value = scaled_value * scale = (affine_value - zero_point) * scale $$
计算机通常使用有限位数存储数学值。虽然上述转换是精确的,但要将结果存储在有限的位中,通常必须对转换结果进行舍入(这两种情况都适用:使用浮点存储和使用定点存储)。对舍入行为的全面讨论超出了本文的范围,除非另有说明,否则可以安全地假设舍入应符合RNE的IEEE754默认值(在硬件允许的情况下)。
Converting between real and fixed point or affine
To convert a real value to a fixed point value, we must know the scale. To convert a real value to an affine value, we must know the scale and the zero point.
Real to affine
要将实值元素的输入张量(通常由浮点格式表示,通常为单精度),转换为由整数类型(例如8位无符号整数)表示的仿射元素张量,可以执行以下转换(不需要使用整型的所有可表示值):
$$ \begin{align*} af&fine_value_{uint8 , or , uint16} \
&= clampToTargetSize(roundToNearestInteger(
\frac{real_value_{Single}}{scale_{Single}})_{sint32} + zero_point_{uint8 , or ,
uint16}) \end{align*} $$
In the above, we assume that $$real_value$$ is a Single, $$scale$$ is a Single, $$roundToNearestInteger$$ returns a signed 32-bit integer, and $$zero_point$$ is an unsigned 8-bit or 16-bit integer.
位深度和定点值的数目表示典型硬件上的常见类型,但不限于特定位深度或使用N位整数的整个范围的要求。
仿射到实数
要将uint8或uint16表示的仿射元素的输出张量,转换为实值元素的张量(通常用浮点格式表示,通常为单精度),可以执行以下转换: