希望根据与这次促销活动类似的已经举办过的促销活动的历史消费数据,用过机器学习算法得到一个分类器,对新客户进行分类,生成正类客户的客户列表,向他们寄出材料和礼品。
2回归算法应用场景实例
2.1 机场客流量分布预测
为了有效利用机场资源,机场正利用大数据技术,提升生产运营的效率。机场内需要不断提升运行效率的资源有航站楼内的各类灯光电梯设施设备、值机柜台、商铺、广告位、安检通道、登机口,航站楼外的停机位、廊桥、车辆(摆渡车、清洁车、物流车、能源车),要想提升这些资源的利用率首先需要知道未来一段时间将会有多少旅客或航班会使用这些资源,其次需要精准的调度系统来调配这些资源和安排服务人员,帮助机场提升资源利用效率,保障机场安全与服务提升。
以海量机场WiFi数据及安检登机值机数据,希望通过数据算法实现机场航站楼客流分析与预测。
2.2 音乐流行趋势预测
经过7年的发展与沉淀,目前某音乐平台拥有数百万的曲库资源,每天千万的用户活跃在平台上,拥有数亿人次的用户试听、收藏等行为。在原创艺人和作品方面,更是拥有数万的独立音乐人,每月上传上万个原创作品,形成超过几十万首曲目的原创作品库,如此庞大的数据资源库对于音乐流行趋势的把握有着极为重要的指引作用。
以某音乐平台用户的历史播放数据为基础,期望通过对艺人的试听量的预测,挖掘出即将成为潮流的艺人,从而实现对一个时间段内音乐流行趋势的准确把控。
2.3 需求预测与仓储规划方案
拥有海量的买家和卖家交易数据的情况下,利用数据挖掘技术,我们能对未来的商品需求量进行准确地预测,从而帮助商家自动化很多供应链过程中的决策。这些以大数据驱动的供应链能够帮助商家大幅降低运营成本,更精确的需求预测,能够大大地优化运营成本,降低收货时效,提升整个社会的供应链物流效率,朝智能化的供应链平台方向更加迈进一步。高质量的商品需求预测是供应链管理的基础和核心功能。
以历史一年海量买家和卖家的数据为依据,希望预测某商品在未来二周全国和区域性需求量。用数据挖掘技术和方法精准刻画商品需求的变动规律,对未来的全国和区域性需求量进行预测,同时考虑到未来的不确定性对物流成本的影响,做到全局的最优化。
2.4 新浪微博互动量预测
新浪微博作为中国最大的社交媒体平台,旨在帮助用户发布的公开内容提供快速传播互动的通道,提升内容和用户的影响力。希望能够最快找到有价值微博的方法,然后应用于平台的内容分发控制策略,对于有价值的内容可以增加曝光量,提高内容的传播互动量。对于一条原创博文而言,转发、评论、赞等互动行为能够体现出用户对于博文内容的兴趣程度,也是对博文进行分发控制的重要参考指标。
希望根据抽样用户的原创博文在发表一天后的转发、评论、赞总数,建立博文的互动模型,并预测用户后续博文在发表一天后的互动情况。
2.5 货币基金资金流入流出预测
某金融服务机构拥有大量会员并且业务场景中每天都涉及大量的资金流入和流出,面对如此庞大的用户群,资金管理压力会非常大。在既保证资金流动性风险最小,又满足日常业务运转的情况下,精准地预测资金的流入流出情况变得尤为重要。
期望能够通过用户基本信息数据、用户申购赎回数据、收益率表和银行间拆借利率等信息,对用户的申购赎回数据的把握,精准预测未来每日的资金流入流出情况。
2.6 电影票房预测
中国是全球第二大电影市场,同时也是增长最快的市场之一;随着市场的成熟,影响电影票房的因素也越来越多,包括题材、内容、导演、演员、编辑、发行方等等。因此对电影制作公司而言,依靠主观经验制作一部高票房的电影也越来越困难,而随着大数据技术的发展,借助大数据分析对电影市场进行分析,指导电影制作成为可能。
希望依据历史票房数据、影评数据、舆情数据等互联网公众数据,对电影票房进行预测。
2.7 农产品价格预测分析
农产品价格受市场影响的程度特别大,特别是受农产品的供求关系影响较大,同时价格本身又受自然条件、社会和经济条件的影响,特别是国际市场的影响。从价格本身来看,受供求、季节等发生波动,受外界各种影响比较多,这就造成了价格预测的困难。但从长期看,农产品价格随着时间的推移仍然呈现一定规律性。价格预测是大数据的精华所在,通过大量的历史数据分析,预测未来的价格走势,为决策者提供更有力的数据支持。