机器学习算法应用场景 (5)

希望通过分析价格历史数据,对要求预测的农产品接下来固定时间的价格进行预测。并尽可能多的使用与价格有影响的其他数据以提高预测的准确率。

2.8 基于多源数据的青藏高原湖泊面积预测

全球气候变化对青藏高原的湖泊水储量有很大影响,因此精确的估计青藏高原湖泊面积变化对于研究气候变化变得很重要。海量多源异构数据和大数据处理与挖掘技术给湖泊面积变化研究带来新的解决思路;如何通过多源数据对青藏高原的湖泊面积进行预测,将大数据技术应用到全球气候变化研究中来成为一项新的挑战。

希望通过研究青藏高原湖泊面积变化的多种影响因素,构建青藏高原湖泊面积预测模型。

2.9 微博传播规模和传播深度预测

近些年,一些研究表明,一条微博发出以后,只需要观察其在之后一小段时间内的转发情况,它的传播规模便可以被预测。但是不同类型的微博会有不同的传播方式,比如明星晒一张生活状态就能得到众多粉丝的热捧,具有较大的传播广度,但是往往在传播深度上稍显不足;相比之下,一些被广泛讨论的新闻类微博往往具有较深的传播深度。也有统计结果显示,一些谣言往往会得到大规模的传播,辟谣类的消息反而得不到广泛关注。不仅如此,我们在热门微博中能看到不少正能量的信息,同时也能看到一些话题被持正反两种不同意见的人掀起讨论热潮。简而言之,微博初期的传播速度、用户关系、信息类型、内容情感等特征都是影响微博传播规模和深度的重要影响因素。

希望基于大约1-3万条微博及其它们的转发微博,结合微博用户的关注关系、微博的内容类型和情感分析以及初期的传播模式,来预测微博的传播规模和传播深度。

2.10 鲍鱼年龄预测

鲍鱼,在现代汉语中有多种含义。最常用的是指一种原始的海洋贝类,属于单壳软体动物,其只有半面外壳,壳坚厚、扁而宽,鲍鱼是中国传统的名贵食材,位居四大海味之首。直至现今,在人民大会堂举行的多次国宴及大型宴会中,鲍鱼经常榜上有名,成为中国经典国宴菜之一。被人们称为“海洋的耳朵”。和古代“用盐腌制的鱼”是两种东西。鲍鱼的优劣与年龄相关。一般来说,我们可以数鲍鱼的生长纹来确定鲍鱼的年龄,但数生长纹也是一件挺麻烦的事情。

希望利用与鲍鱼年龄有关的因素来预测鲍鱼的年龄。

2.11 学生成绩排名预测

学生的校园行为数据,可以挖掘用户作息规律、兴趣爱好等,精准地预测学生之间的相对排名。通过对这些日常行为的建模来预测学生的学业成绩,可以实现提前预警学生的异常情况,并进行适当的干预,因而对学生的培养、管理工作将会起到极其重要的作用。从某高校的某个学院随机抽取一定比例学生,提供这些学生在三个学期的图书馆进出记录、一卡通消费记录、图书馆借阅记录、以及综合成绩的相对排名。这一部分数据将作为训练数据。我们从另外的某学院随机抽取一定比例的学生,然后提供他们在三个学期的图书馆进出记录、一卡通消费记录、图书借阅记录、以及前两个学期的成绩排名。

希望通过借助大数据相关的挖掘技术和基础算法,预测第三学期的成绩排名。

2.12 网约车出行流量预测

在出行问题上,中国市场人数多、人口密度大,总体的出行频率远高于其他国家,这种情况在大城市尤为明显。然而,截止目前中国拥有汽车的人口只有不到10%,这也意味着在中国人们的出行更加依赖于出租车、公共交通等市场提供的服务。另一方面,滴滴出行占领了国内绝大部分的网络呼叫出行市场,面对着巨大的数据量以及与日俱增的数据处理需求。截止目前,滴滴出行平台每日需处理1100万订单,需要分析的数据量达到50TB,路径规划服务请求超过90亿。面对如此庞杂的数据,我们需要通过不断升级、完善与创新背后的云计算与大数据技术,从而保证数据分析及相关应用的稳定,实现高频出行下的运力均衡。供需预测就是其中的一个关键问题。供需预测的目标是准确预测出给定地理区域在未来某个时间段的出行需求量及需求满足量。调研发现,同一地区不同时间段的订单密度是不一样的,例如大型居住区在早高峰时段的出行需求比较旺盛,而商务区则在晚高峰时段的出行需求比较旺盛。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgfzfw.html