粒子群算法(1)----粒子群算法简单介绍 (5)

   主要的粒子群算法的分支就着4个,大部分的粒子群算法都环绕着这4个分支在变化,当中粒子群算法的变形居多,从根本上来说,差点儿没有什么新的思想的提出。

粒子群算法(5)-----标准粒子群算法的实现

 标准粒子群算法的实现思想基本依照粒子群算法(2)----标准的粒子群算法的讲述实现。主要分为3个函数。第一个函数为粒子群初始化函数

  InitSwarm(SwarmSize......AdaptFunc)其主要作用是初始化粒子群的粒子,并设定粒子的速度、位置在一定的范围内。本函数所採用的数据结构例如以下所看到的:

  表ParSwarm记录的是粒子的位置、速度与当前的适应度值,我们用W来表示位置,用V来代表速度,用F来代表当前的适应度值。在这里我们如果粒子个数为N,每一个粒子的维数为D

W1,1

 

W1,2

 

...

 

W1,D

 

V1,1

 

V1,2

 

...

 

V1,D-1

 

V1,D

 

F1

 

1个粒子

 

W2,1

 

W2,2

 

...

 

W2,D

 

V2,1

 

V2,2

 

...

 

V2,D-1

 

V2,D

 

F2

 

2个粒子

 

...

 

...

 

...

 

...

 

...

 

...

 

...

 

...

 

...

 

...

 

.......

 

WN-1,1

 

WN-1,2

 

...

 

WN-1,D-1

 

VN-1,1

 

VN-1,2

 

...

 

VN-1,D-1

 

VN-1,D

 

FN-1

 

N-1个粒子

 

WN,1

 

WN,2

 

...

 

WN,D

 

VN,1

 

VN,2

 

...

 

VN,D-1

 

VN,D

 

FN

 

N个粒子

 

   表OptSwarm记录每一个粒子的历史最优解(粒子历史最好的适应度)以及全部粒子搜索到的全局最优解。用Wg代表全局最优解,W.,1代表每一个粒子的历史最优解。粒子群初始化阶段表OptSwarm的前N行与表ParSwarm中的同样,而Wg的值为表ParSwarm中适应度值的最大值相应的行。

Wj,1

 

Wj,2

 

...

 

Wj,D-1

 

Wj,D

 

1个粒子的历史最优解

 

Wk,1

 

Wk,2

 

...

 

Wk,D-1

 

Wk,D

 

2个粒子的历史最优解

 

...

 

...

 

...

 

...

 

...

 

...

 

Wl,1

 

Wl,2

 

...

 

Wl,D-1

 

Wl,D

 

N-1个粒子的历史最优解

 

Wm,1

 

Wm,2

 

...

 

Wm,D-1

 

Wm,D

 

N个粒子的历史最优解

 

Wg,1

 

Wg,2

 

...

 

Wg,D-1

 

Wg,D

 

全局粒子的历史最优解

 

  依据这样的思想MATLAB代码例如以下:

function [ParSwarm,OptSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc)

%功能描写叙述:初始化粒子群,限定粒子群的位置以及速度在指定的范围内

%[ParSwarm,OptSwarm,BadSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc)

%

%输入參数:SwarmSize:种群大小的个数

%输入參数:ParticleSize:一个粒子的维数

%输入參数:ParticleScope:一个粒子在运算中各维的范围;

%         ParticleScope格式:

%           3维粒子的ParticleScope格式:

%                                   [x1Min,x1Max

%                                    x2Min,x2Max

%                                    x3Min,x3Max]

%

%输入參数:AdaptFunc:适应度函数

%

%输出:ParSwarm初始化的粒子群

%输出:OptSwarm粒子群当前最优解与全局最优解

%

%使用方法[ParSwarm,OptSwarm,BadSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc);

%

%异常:首先保证该文件在Matlab的搜索路径中,然后查看相关的提示信息。

%

%编制人:XXX

%编制时间:2007.3.26

%參考文献:无

%

%容错控制

if nargin~=4

    error(\'输入的參数个数错误。\')

end

if nargout<2

    error(\'输出的參数的个数太少,不能保证以后的执行。\');

end

[row,colum]=size(ParticleSize);

if row>1|colum>1

    error(\'输入的粒子的维数错误,是一个11列的数据。\');

end

[row,colum]=size(ParticleScope);

if row~=ParticleSize|colum~=2

    error(\'输入的粒子的维数范围错误。\');

end

%初始化粒子群矩阵

%初始化粒子群矩阵,全部设为[0-1]随机数

%rand(\'state\',0);

ParSwarm=rand(SwarmSize,2*ParticleSize+1);

%对粒子群中位置,速度的范围进行调节

for k=1:ParticleSize

    ParSwarm(:,k)=ParSwarm(:,k)*(ParticleScope(k,2)-ParticleScope(k,1))+ParticleScope(k,1);

    %调节速度,使速度与位置的范围一致

    ParSwarm(:,ParticleSize+k)=ParSwarm(:,ParticleSize+k)*(ParticleScope(k,2)-ParticleScope(k,1))+ParticleScope(k,1);

end

    

%对每一个粒子计算其适应度函数的值

for k=1:SwarmSize

    ParSwarm(k,2*ParticleSize+1)=AdaptFunc(ParSwarm(k,1:ParticleSize));

end

%初始化粒子群最优解矩阵

OptSwarm=zeros(SwarmSize+1,ParticleSize);

%粒子群最优解矩阵全部设为零

[maxValue,row]=max(ParSwarm(:,2*ParticleSize+1));

%寻找适应度函数值最大的解在矩阵中的位置(行数)

OptSwarm=ParSwarm(1:SwarmSize,1:ParticleSize);

OptSwarm(SwarmSize+1,:)=ParSwarm(row,1:ParticleSize);

  以下的函数BaseStepPso实现了标准全局版粒子群算法的单步更新位置速度的功能

function [ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,MinW,LoopCount,CurCount)

%功能描写叙述:全局版本号:主要的粒子群算法的单步更新位置,速度的算法

%

%[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,MinW,LoopCount,CurCount)

%

%输入參数:ParSwarm:粒子群矩阵,包括粒子的位置,速度与当前的目标函数值

%输入參数:OptSwarm:包括粒子群个体最优解与全局最优解的矩阵

%输入參数:ParticleScope:一个粒子在运算中各维的范围;

%输入參数:AdaptFunc:适应度函数

%输入參数:LoopCount:迭代的总次数

%输入參数:CurCount:当前迭代的次数

%

%返回值:含意同输入的同名參数

%

%使用方法:[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,MinW,LoopCount,CurCount)

%

%异常:首先保证该文件在Matlab的搜索路径中,然后查看相关的提示信息。

%

%编制人:XXX

%编制时间:2007.3.26

%參考文献:XXX

%參考文献:XXX

%

%改动记录

%----------------------------------------------------------------

%2007.3.27

%改动人:XXX

加入2*unifrnd(0,1).*SubTract1(row,:)中的unifrnd(0,1)随机数,使性能大为提高

%參照基于MATLAB的粒子群优化算法程序设计

%

总体评价:使用这个版本号的调节系数,效果比較好

%

%容错控制

if nargin~=8

    error(\'输入的參数个数错误。\')

end

if nargout~=2

    error(\'输出的个数太少,不能保证循环迭代。\')

end

%開始单步更新的操作

%*********************************************

%*****更改以下的代码,能够更改惯性因子的变化*****

%---------------------------------------------------------------------

%线形递减策略

w=MaxW-CurCount*((MaxW-MinW)/LoopCount);

%---------------------------------------------------------------------

%w固定不变策略

%w=0.7;

%---------------------------------------------------------------------

%參考文献:陈贵敏,贾建援,韩琪,粒子群优化算法的惯性权值递减策略研究,西安交通大学学报,20061

%w非线形递减,以凹函数递减

%w=(MaxW-MinW)*(CurCount/LoopCount)^2+(MinW-MaxW)*(2*CurCount/LoopCount)+MaxW;

%---------------------------------------------------------------------

%w非线形递减,以凹函数递减

%w=MinW*(MaxW/MinW)^(1/(1+10*CurCount/LoopCount));

%*****更改上面的代码,能够更改惯性因子的变化*****

%*********************************************

%得到粒子群群体大小以及一个粒子维数的信息

[ParRow,ParCol]=size(ParSwarm);

%得到粒子的维数

ParCol=(ParCol-1)/2;

SubTract1=OptSwarm(1:ParRow,:)-ParSwarm(:,1:ParCol);

%*********************************************

%*****更改以下的代码,能够更改c1,c2的变化*****

c1=2;

c2=2;

%---------------------------------------------------------------------

%con=1;

%c1=4-exp(-con*abs(mean(ParSwarm(:,2*ParCol+1))-AdaptFunc(OptSwarm(ParRow+1,:))));

%c2=4-c1;

%----------------------------------------------------------------------

%*****更改上面的代码,能够更改c1,c2的变化*****

%*********************************************

for row=1:ParRow

   SubTract2=OptSwarm(ParRow+1,:)-ParSwarm(row,1:ParCol);

   TempV=w.*ParSwarm(row,ParCol+1:2*ParCol)+2*unifrnd(0,1).*SubTract1(row,:)+2*unifrnd(0,1).*SubTract2;

   %限制速度的代码

   for h=1:ParCol

       if TempV(:,h)>ParticleScope(h,2)

           TempV(:,h)=ParticleScope(h,2);

       end

       if TempV(:,h)<-ParticleScope(h,2)

           TempV(:,h)=-ParticleScope(h,2)+1e-10;

           %1e-10防止适应度函数被零除

       end

   end  

   

   %更新速度

   ParSwarm(row,ParCol+1:2*ParCol)=TempV;

   

   %*********************************************

   %*****更改以下的代码,能够更改约束因子的变化*****

   %---------------------------------------------------------------------

   %a=1;

   %---------------------------------------------------------------------

   a=0.729;

   %*****更改上面的代码,能够更改约束因子的变化*****

   %*********************************************

   

   %限制位置的范围

   TempPos=ParSwarm(row,1:ParCol)+a*TempV;

   for h=1:ParCol

       if TempPos(:,h)>ParticleScope(h,2)

           TempPos(:,h)=ParticleScope(h,2);

       end

       if TempPos(:,h)<=ParticleScope(h,1)

           TempPos(:,h)=ParticleScope(h,1)+1e-10;           

       end

   end

   %更新位置 

   ParSwarm(row,1:ParCol)=TempPos;

   

   %计算每一个粒子的新的适应度值

   ParSwarm(row,2*ParCol+1)=AdaptFunc(ParSwarm(row,1:ParCol));

   if ParSwarm(row,2*ParCol+1)>AdaptFunc(OptSwarm(row,1:ParCol))

       OptSwarm(row,1:ParCol)=ParSwarm(row,1:ParCol);

   end

end

%for循环结束

%寻找适应度函数值最大的解在矩阵中的位置(行数),进行全局最优的改变 

[maxValue,row]=max(ParSwarm(:,2*ParCol+1));

if AdaptFunc(ParSwarm(row,1:ParCol))>AdaptFunc(OptSwarm(ParRow+1,:))

    OptSwarm(ParRow+1,:)=ParSwarm(row,1:ParCol);

end

  这两个函数给出以后,须要一个函数来把这两个函数组装起来,以此实现一个完整的粒子群算法,这个函数就是PsoProcess

  代码例如以下:

 function [Result,OnLine,OffLine,MinMaxMeanAdapt]=PsoProcess(SwarmSize,ParticleSize,ParticleScope,InitFunc,StepFindFunc,AdaptFunc,IsStep,IsDraw,LoopCount,IsPlot)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgyywg.html