机器学习经典算法之Apriori (4)

实际上,就算用户不购买可乐,也会直接购买尿布的,所以用户是否购买可乐,对尿布的提升作用并不大。我们可以用下面的公式来计算商品 A 对商品 B 的提升度:

提升度 (A→B)= 置信度 (A→B)/ 支持度 (B)

这个公式是用来衡量 A 出现的情况下,是否会对 B 出现的概率有所提升。

所以提升度有三种可能:

提升度 (A→B)>1:代表有提升;

提升度 (A→B)=1:代表有没有提升,也没有下降;

提升度 (A→B)<1:代表有下降。

 

二、 Apriori 的工作原理

明白了关联规则中支持度、置信度和提升度这几个重要概念,我们来看下 Apriori 算法是如何工作的。

首先我们把上面案例中的商品用 ID 来代表,牛奶、面包、尿布、可乐、啤酒、鸡蛋的商品 ID 分别设置为 1-6,上面的数据表可以变为:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwdgxy.html