在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯
度下降算法更快地收敛。
以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-
2000 平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等
高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。
解决的方法是尝试将所有特征的尺度都尽量缩放到-1 到1 之间。如图:
最简单的方法是令:
在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯
度下降算法更快地收敛。
以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-
2000 平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等
高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。
解决的方法是尝试将所有特征的尺度都尽量缩放到-1 到1 之间。如图:
最简单的方法是令:
内容版权声明:除非注明,否则皆为本站原创文章。