知识图谱基础知识之一——人人都能理解的知识图谱

1 知识图谱和人工智能
说起知识图谱,可能很多人不太了解,但要说到人工智能,大家就耳熟能详了。人工智能是指机器要像人一样可以思考,具有智慧。现在这个阶段,人工智能研究的人越来越多,在很多行业也实现了部分的人工智能,让机器代替了人进行简单重复性的工作。
在这里我们可以把人工智能分为两个层次,一个是感知层次,也就是听觉、视觉、嗅觉、味觉等等,目前人工智能在听觉和视觉方面做的比较好,语音识别,图像识别,研究的人多,也有产品出来。但总起来说,感知层次的人工智能还没有体现人类的独有的智慧,其它动物可能在感知层次比人要好,比如鹰的眼睛,狼的耳朵,豹的速度,熊的力量等等。
真正体现人工智能的还是第二个层次,也就是认知层次,能够认识这个客观世界。而认知世界是通过大量的知识积累实现的,小孩子见到狗和猫,见过几次就能分辨出狗和猫,让机器来分辨难度就比较大,当然现在通过大数据训练也在提升。这种认知能力是知识的运用,小孩子见到狗,他就会在潜意识中总结狗的特征,长耳朵,瘦脸,汪汪叫。猫的特征,短耳朵,圆脸,喵喵叫。

知识图谱基础知识之一——人人都能理解的知识图谱

这些知识会存储在人类的大脑中,作为经验知识,再次碰到类似的动物,人们马上就从记忆中想起该动物的特征,对号入座,马上判断出动物的类型。机器要想具有认知能力,也需要建立一个知识库,然后运用知识库来做一些事,这个知识库就是我们要说的知识图谱。从这个角度说,知识图谱是人工职能的一个重要分支,也是机器具有认知能力的基石,在人工智能领域具有非常重要的地位。

2 知识图谱的由来
知识图谱(Knowledge graph)首先是由Google提出来的,大家知道Google是做搜索引擎的,知识图谱出现之前,我们使用google、百度进行搜索的时候,搜索的结果是一堆网页,我们会根据搜索结果的网页题目再点击链接,才能看到具体内容,2012年google提出Google Knowldge Graph之后,利用知识图谱技术改善了搜索引擎核心,表现出来的效果就是我们现在使用搜索引擎进行搜索的时候,搜索结果会以一定的组织结构呈现,比如我们搜索比尔盖茨,结果如图所示

知识图谱基础知识之一——人人都能理解的知识图谱

这样的搜索结果,与知识图谱出现之前的结果有什么区别呢,辛格尔博士对知识图谱的介绍很简短,things,not string,抓住了知识图谱的核心,也点出了知识图谱加入之后搜索发生的变化,以前的搜索,都是将要搜索的内容看作字符串,结果是和字符串进行匹配,将匹配程度高的排在前面,后面按照匹配度依次显示。利用知识图谱之后,将搜索的内容不再看作字符串,而是看作客观世界的事物,也就是一个个的个体。搜索比尔盖茨的时候,搜索引擎不是搜索“比尔盖茨”这个字符串,而是搜索比尔盖茨这个人,围绕比尔盖茨这个人,展示与他相关的人和事,左侧百科会把比尔盖茨的主要情况列举出来,右侧显示比尔盖茨的微软产品和与他类似的人,主要是一些IT行业的创始人。一个搜索结果页面就把和比尔盖茨的基本情况和他的主要关系都列出来了,搜索的人很容易找到自己感兴趣的结果。

3 知识图谱是什么
知识图谱本质上是一种语义网络,用图的形式描述客观事物,这里的图指的是数据结构中的图,也就是由节点和边组成的,这也是知识图谱(Knowledge Graph)的真实含义。知识图谱中的节点表示概念和实体,概念是抽象出来的事物,实体是具体的事物;边表示事物的关系和属性,事物的内部特征用属性来表示,外部联系用关系来表示。很多时候,人们简化了对知识图谱的描述,将实体和概念统称为实体,将关系和属性统称为关系,这样就可以说知识图谱就是描述实体以及实体之间的关系。实体可以是人,地方,组织机构,概念等等,关系的种类更多,可以是人与人之间的关系,人与组织之间的关系,概念与某个物体之间的关系等等,以下是一个例子。

知识图谱基础知识之一——人人都能理解的知识图谱


4 知识图谱是怎么组织数据的
知识图谱是由实体和实体的关系组成,通过图的形式表现出来,那么实体和实体关系的这些数据在知识图谱中怎么组织呢,这就涉及到三元组的概念,在知识图谱中,节点-边-节点可以看作一条记录,第一个节点看作主语,边看作谓语,第二个节点看作宾语,主谓宾构成一条记录。比如曹操的儿子是曹丕,曹操是主语,儿子是谓语,曹丕是宾语。再比如,曹操的小名是阿瞒,主语是曹操,谓语是小名,宾语是阿瞒。知识图谱就是由这样的一条条三元组构成,围绕着一个主语,可以有很多的关系呈现,随着知识的不断积累,最终会形成一个庞大的知识图谱,知识图谱建设完成后,会包含海量的数据,内涵丰富的知识。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwjygg.html