卷积——五分钟了解\"

在先前的文章中,我们建立了对卷积神经网络的理解,而没有涉及任何重要的数学。然而,要走得更远,我们需要了解卷积。

如果我们只是想了解卷积神经网络,那么大概了解卷积就足够了。但是,本系列文章的目的是将我们带到卷积神经网络的前沿,并探索新的选择。为此,我们需要非常深入地了解卷积。

值得庆幸的是,通过一些示例,卷积成为一个非常简单的想法。(刚看到作者这句话,我觉得他在扯淡,但下面的一分钟,我就彻底明白了卷积是在干什么,太强啦)

掉落小球的启示

想象一下,我们将一个球从某个高度掉落到地面上,假设在该地面上该小球将只向一个方向运动(下面的图例是向右)。如果您将球抛下然后从其着陆点上方再次抛下,它走出距离为 c 的可能性有多大?

让我们来分解一下这个过程。在第一次下降之后,它将以概率 f(a) 从起点降落 a 个单位,其中 f 是概率分布。

现在,在第一次下降之后,我们将球捡起并将其从第一次停下的点上方的另一个高度下降。小球滚到偏离新起点 b 个单位的概率为 g(b),如果小球从不同的高度掉落,则该小球滚到偏离新起点 b 个单位的概率 g 可能是不同的概率分布。

卷积——五分钟了解\

如果我们确定第一个落点的结果,也就是说我们知道球会走距离 a ,对于总距离为 c 的球,第二个落点的行进距离也就固定了,我们假设第二次下落后的行进距离为 b ,其中 a + b = c 。因此发生这种情况的可能性就是 f(a) * g(b) (这儿的意思是 在这两次小球下落中,发生如下结果"总距离为 c ,第一次距离为 a , 第二次距离为 b "的概率为 f(a) * g(b) )

让我们考虑一个具体的离散示例。我们希望总距离 c 为3。如果第一次滚动,a = 2 ,则第二次必须滚动 b = 1 才能达到我们的总距离 a + b = 3 ,其概率为 f(2) * g(1) 。

卷积——五分钟了解\

但是,这不是我们达到总距离为 3 的唯一方法。小球第一次也可以滚动1个单位,而第二次滚动2个单位。或第一次为0,第二次为3。只要加到3,它就可以取任何 a 和 b 。

卷积——五分钟了解\

概率分别为 f(1) ⋅ g(2) 和 f(0) ⋅ g(3) 。

为了找出小球到达总距离 c 的总可能性,我们不能仅考虑一种到达 c 的可能方式。相反,我们考虑将 c 分为两个下落后举例为 a 和 b 的所有可能方法,并对每种方法的概率求和。

... f(0) ⋅ g(3) + f(1) ⋅ g(2) + f(2) ⋅ g(1) ...

我们已经知道,每种情况a + b = c 的概率就是 f(a) ⋅ g(b) 。因此,对a + b = c的每个解求和,我们可以将总似然表示为:

\[\sum_{a+b=c}{f(a) ⋅ g(b)} \]

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwsxjj.html