浅析MQ消息队列以及主流MQ的优缺点

为什么要使用MQ

先说一下MQ常见的使用场景吧,MQ的使用场景有很多,但是比较核心的就是:解耦、异步、削锋。

系统解耦

  首先举例下面这个场景,现有ABCDE五个系统,最初的时候BCD三个系统都要调用A系统的接口获取数据,一切都很正常,但是突然,D系统说:我不要了,你不用给我传数据了,A系统无奈,只能修改代码,将调用D系统的代码删除,这时候还没删除呢,E系统发送了请求,但是A系统这时候还没处理完D系统的请求,A系统卒!!!彻底崩溃。如下图

浅析MQ消息队列以及主流MQ的优缺点

  上述场景中,BCDE都需要用到A系统提供的数据,A系统跟其他四个系统严重耦合,需要时时刻刻考虑其他四个系统要是挂了怎么办,需不需要重新发送数据给他们,这个时候的A系统内心是崩溃的。

  但是如果使用了MQ之后 ,A系统的数据只需要放到MQ里面,其他的系统想请求获取数据只需要去MQ里面消费即可,如果突然不想请求了,就取消对MQ的消费就行了,A系统根本不需要考虑给谁去响应这个数据,也不需要去维护代码,也不用考虑其他系统是否调用成功,失败超时等情况。如下图

浅析MQ消息队列以及主流MQ的优缺点

总结:通过MQ发布订阅消息的模型,A系统就成功的跟其他系统解耦了。

Tips:你需要思考一下,在你自己的系统里面有没有类似的情况,一个系统或者模块,调用了多个系统或者模块,它们互相之间的调用非常复杂,并且维护起来很麻烦,但其实这个调用是不需要直接同步调用接口的,如果用MQ给它异步化解耦也是可以的,你就需要思考在你的项目里,是不是可以用MQ给它进行系统的解耦。

异步调用

  场景二,还是ABCD四个系统,A系统收到一个请求,需要在自己本地写库,还需要往BCD三个系统写库,A系统自己写本地库需要3ms,往其他系统写库相对较慢,B系统200ms ,C系统350ms,D系统400ms,这样算起来,整个功能从请求到响应的时间为3ms+200ms+350ms+400ms=953ms,接近一秒,对于用户来说,点个按钮要等这么长时间,基本是无法接受的,侧面也反映出这家研发人员技术不咋地。如下图

浅析MQ消息队列以及主流MQ的优缺点

  一般的互联网企业,对于用户请求响应的时间要求在100ms-200ms之间,这样,用户的眼睛存在视觉暂停现象,用户响应时间在此范围内就可以了,所以上面的现象是不可取的。

  如果用了MQ,用户发送请求到A系统耗时3ms,A系统发送三条消息到MQ,假如耗时5ms,用户从发送请求到相应3ms+5ms=8ms,仅用了8ms,用户的体验非常好。

浅析MQ消息队列以及主流MQ的优缺点

流量削峰

  场景三,这次举个实例吧,也是近期发生的,我们都知道 ,2020年爆发的这场新冠病毒,导致各大线上商城APP里面的口罩被抢购一空,在这种情况下,JD商城开启了一场每晚八点的抢购3Q口罩的活动,每天下午三点进行预约,晚上八点抢购,从JD商城刚上线这个活动,我连续抢了近一个周,也算是见证了一个百万并发量系统从出现问题到完善的一个过程,最初第一天,我抢购的时候,一百多万预约,到八点抢购估计也能有百万的并发量,可是第一天,到八点我抢的时候,由于并发量太高,直接把JD服务器弄崩了,直接报了异常,可能JD在上线这个活动的时候也没能够想到会有那么高的并发,打了一个猝不及防,但是这只是在前一两天出现报异常的情况,后面却没有再出现异常信息,到后来再抢购只是响应的时间变得很慢,但是JD系统并没有崩溃,这种情况下一般就是用了MQ(或者之前用了MQ,这次换了个吞吐量级别更高的MQ),也正是利用了MQ的三大好处之一——削峰。

  JD系统每天0—19点,系统风平浪静,结果一到八点抢购的时候,每秒并发达到百万,假设JD数据库没秒能处理1.5w条并发请求(并非实际数据,主要为了举例),到八点抢购的时候,每秒并发百万,这直接导致系统异常,但是八点一过,可能也就几万用户在线操作,每秒的请求可能也就几百条,对整个系统毫无压力。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwxpwf.html