[AI开发]视频结构化类应用的局限性

算法不是通用的,基于深度学习的应用系统不但做不到通用,即使对于同一类业务场景,还需要为每个场景做定制、特殊处理,这样才能有可能到达实用标准。这种局限性在计算机视觉领域的应用中表现得尤其突出,本文介绍基于深度学习的交通行业视频结构化类应用在实际使用场景中遇到的一些问题。计算机视觉处理的目标是图片,因此图片直接影响最终算法的效果,实际场景中碰到的问题基本都是由于各种原因导致视频图片发生变化最后影响系统的使用效果。

[AI开发]视频结构化类应用的局限性

 

露天天气环境影响

由于天气变化、光照季节性变化等各种原因,视频画面经常出现干扰性噪声,直接影响到最终目标检测算法的准确性。大致分为以下几类:

(1)光照阴影。道路两旁树木、路牌等投影在路面上的阴影造成的误检。这种情况不是时刻都发生,受太阳光照射角度、强度影响。

(2)路面反光。路面不平偶尔出现反光偏暗的情况,被误检成抛洒物、车辆。这种情况不是时刻都发生,受太阳光照射角度影响。

(3)镜头光晕。受太阳逆光照射,镜头上产生光晕,最终会影响视频画面,产生各种误检。

(4)镜头雨点。下雨天气摄像机镜头沾雨水,最终会影响视频画面,产生各种误检。

(5)大雨大雾。碰到大雨大雾时,直接遮挡路面上的目标,影响检测效果,造成漏检。

(6)风吹导致镜头偏移。交通类视频结构化应用要求摄像机视角不能异常移动(程序控制除外),原因有两个,一是交通类应用需要测速、计数,这两个功能要求事先在视频画面中做一些描点配置,视角偏移会影响该项功能;二是交通类应用只需要检测路面上的目标(其他场景其实也只需要检测特定区域中的目标),如果摄像机偏移,非路面目标容易进入事先配置的检测区域,容易造成误报,比如路牌进入检测区域,容易误检成车辆。

受外在环境影响,算法的检出率大大降低,误报率上升,同时还会影响目标跟踪效果,因为目标的跟踪效果严重依赖于目标检测效果,如果目标锁定不稳定,跟踪就会很差,目标行为分析结果就很差。

[AI开发]视频结构化类应用的局限性

——红色箭头处光影和地面箭头一起造成的误检——

 

外场缺少亮度照明

外场道路夜间没有灯光照明时,人眼分辨目标就比较困难,再加上车辆远光灯照射镜头,系统基本无法工作:

(1)夜间完全无灯光照明时,行驶车辆即使打开近光灯,算法检出率也不高,尤其当摄像机正对车头位置时(正对车尾效果还好)。

(2)夜间完全无灯光照明时,行驶车辆打开远光灯,当摄像机角度偏平(平视姿态),远光灯会直射镜头,画面完全无法分辨。

部分道路夜间有灯光照明时,系统工作效果非常好,几乎跟白天效果接近。目标检测的前提是目标轮廓清晰,如果由于灯光等原因,目标轮廓无法与环境有明显区分,那么系统效果非常差。

[AI开发]视频结构化类应用的局限性

——夜间无灯光照明——

 

三维场景到二维画面的信息丢失

现实世界是三维的,视频画面是二维的,三维到二维的映射会造成一些场景信息的丢失,比如由于透视造成的坐标映射刻度不可知或者需要相当复杂的配置过程,这就导致在进行目标行为分析时会碰到非常多的困难:

(1)停车误检。道路尽头的大卡车由于行驶速度比较慢,车型体积又比较大,从二维画面中观察,人眼很难判断目标是否静止不动,行为分析算法逻辑同样会出现这种情况。

(2)车辆测速配置过程复杂。汽车在平面上匀速行驶,但是通过摄像机画面看到的目标并非如此,画面中观察到的结果是“远慢近快”,目标在画面中的“像素速度”与“实际物理速度”不能简单一一映射,需要复杂的配置过程。

 

检测区域配置复杂

如果需要进行目标行为分析,系统使用之前需要对每个场景(摄像机视角)进行单独的区域配置、参数标定,这个过程非常复杂,如果场景数目多,这个工作量非常大:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zydsxp.html