杨列昂:腾讯移动分析与服务架构 (2)

数据经过连接、分析,最终得到一个标准化的结果。其中既包括结构化的数据,比如用户属性,用户的商业兴趣,行为特征。也包括一些非结构化的数据,比如语料、声音、图象等信息。再经过整个的处理流程之后,转化成腾讯多维海量的数据资产。这其中涉及到很多的算法和特定的领域问题,其中最基础的,就是涉及到设备特征的识别。

设备识别

img

提到设备识别,安卓系统可以通过API获取IMEI的标识,但是这个有缺陷,市场山寨机的IMEI是一样的。还有一种情况,终端的模拟器,也会对我们的统计造成干扰,还有一些用户篡改设备号的行为,比如现在市面有很多在安卓root的情况下可以修改IMEI。还有是可能报一些攻击,伪造日志请求,篡改里面的设备号字段。

以上这些情况,都是我们能拿到设备号,但设备号可能不够准确,或者可用性比较差。还有一种情况因为受限于系统权限根本拿不到设备号,比如安卓6.0以后,设备号的管理权限也是收的越来越紧。随着大众对用户隐私的意识、关注度越来越高,谷歌的play商店禁止采集IMEI,欧盟也是在近期不断更新自己的个人信息采集的标准。也是在禁止APP在非必要的情况下去获取设备的IMEI信息。

基于以上事实,我们推出自己的一套方案通过移动端的设备识别,设备指纹信息,在服务器端加密下发的方式,解决了在不同场景下设备识别的问题。我们称之为MID。另外通过一套离线的分析系统,可以把设备、刷机、重置设备而重复分配的MID关联起来,从而实现最终的一致性。前面讲的这些,都是我们在指标统计,在一整套的设备画像上的建设。

归因分析

等企业进入到一个精细化运营的阶段,这时候最重要的是归因分析。这里举个例子,以一个游戏行业的用户流失为例。某个知名游戏APP经过分析发现它的流失用户可以分为三种:

一是感觉成长有障碍,无论怎么样去努力,都感不上大玩家,所以愤而离去。

二是游戏负担太重了,觉得每天花好几个小时耗在这里,每天的玩法都比较单一,枯燥乏味。

三是在PVP的场合遇到了一些障碍,比如官方打击外挂不利,或者有一些帮派的垄断。

img

img

针对这种不同原因造成的用户流失,我们采取的策略显然是各不相同的。这个APP的运营方,如果在成本最大化的同时,来去解决这些用户流失的问题。难道给每一个人发一个调查问卷吗?这就需要一个归因分析的能力。我们这里提供了多种手段方法,比如细分流失用户的特征,通过一些方式来建模,最后去对潜在流失用户做一个预测,我们有一个专门的团队做这样的事。

营销推广与效果监测

img

前面是讲移动分析能提供的一些服务,接下来重点关注一下在营销推广和广告效果监测的环节中,我们又有哪些流程可以改进。

广告效果监测

img

在用户获取环节,我们其实有很多的方式,最传统的是付费广告,广告推广的形式。我们从广告推广的四个流程来改进整个的效果。

首先是人群的选取,我们如何把要推广的这些人选出来,更好的标定我们的目标用户。

二是广告投放环节,能一键快速无缝投放到广告平台。

三是效果监测。

四是流量清洗,把异常的流量剔除,来去更好地节约投放方的成本。

用户分群

img

用户分群,这里会提供基于规则和基于算法的两种模型,基于规则包括活跃、非活跃用户,或者已知的自定义实践、用户和设备画像,都可以在这个基础上做一些与或非做一些规则的分群。

基于算法,预测流失用户、预测高潜力用户的分群。

相似人群拓展

img

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyggys.html