马斯克的脑机接口技术,让世界变黑客帝国?你(2)

在已经发表的paper中,Neuralink演示了现有成果应用到一只实验鼠身上,下图右边的这只实验鼠头上有个USB-C口,3072个电极也就有3072个通道传输(似乎在实验中尝试植入44根线,但只成功了40根,也就是实际成功插入这只实验鼠脑中的总共应该是1280个电极),不知道这个USB接口的具体传输规格如何。左边这张图就比较恐怖了,是围手术期的一张照片,展示了这只实验鼠脑皮层表面,其上植入的这些线。

20190722-201.png


这是一只Long-Evans鼠,Neuralink在paper中强调他们的实验完全符合《实验室动物关怀与使用指导原则》

我们首先来了解一下这个USB接口部分。实际上从外部能够看到的USB接口,直接就连接着一套电子相关的解决方案,即接口下方的部分——这部分肯定不需要植入到大脑内部,未来如果真的应用于人脑理论上也不会是这种形态。所以它本质上是个实验室产品,其完全体是下面这样的:

20190722-202.png


A为可处理256个数据通道的ASIC,总共有12个ASIC,一共处理3072个通道;B就是聚合物线了,只不过这里放在了parylene-c基板上,在这些线插入大脑以前需要这层膜;C为钛金属材料的外围;D是数字USB-C连接器

电极(electrode sites)就将大脑信号传输到这个模块上。这个模块设计的难点包含了多个方面,一部分是因为它需要长期进行数据记录,所以就连封装也有较高的要求。考虑到记录通道众多,这就要求信号放大、数字堆栈整合到同一个阵列上。这个模块的工作包含了放大神经信号(<10 µVrms),同时过滤带外噪声,将放大的信号进行采样和数字化,并进行实时处理。由于是穿戴的,所以功耗和尺寸也都必须要小。

模块用到了Neuralink定制的ASIC,一个ASIC上包括了256个可编程放大器(称之为analog pixel模拟像素,这部分的设计难点包括电生理环境存在较多变量,所以它具备了较大的程度的可配置性),还有片上ADC(采样率19.3kHz, 10bit),以及外围控制电路(实现数字信号输出)。每个analog pixel功耗5.2μW,整个ASIC功耗就是大约6mW。目前这个演示的产品中一共是12个ASIC,采用倒装的方式集成到PCB板上。

实际这套系统中还包含了FPGA、实时的温度计、加速计、磁强计,以及前面用于电源和数据传输的USB-C连接器。这些都装载到一个钛金属底座上,另外外层包裹了parylene-c,作为防潮层存在,毕竟是需要长期佩戴的。传输方案Neuralink做了两种,包括不同的通行传输特性,这里鉴于篇幅的关系就不再赘述了,有兴趣的可以查看本文文末给出的参考链接。

20190722-203.png

在数据传出到外部(比如外部计算机)以后,后续的解决方案会将数据流转为10G以太网UDP包,直接实时进行数据的可视化,或者是写到存储系统中。这部分其实也要求Neuralink自己再做一套用于信号检测和呈现的软件生态。上面这张图展示的就是从插入实验鼠脑中的一根线(如前所述的32个通道)获取到的神经信号(未过滤的)。

线与缝纫机

实际上,就Neuralink的技术来说,上面的芯片相关部分算不上是重点。真正的重点在于前端连接大脑皮层的部分,也就是“连接线”和植入线的那台机器——在Neuralink的paper中,这台机器被比喻为“缝纫机”。感觉就像有个缝纫机将这些线“缝”进你的大脑一样,听着都很瘆人,所以才称得上植入式的科技装备,也特别符合Elon Musk散发的气质。

先来说说连接所用的“线材”和接头。据说Neuralink专门开发了生产神经探针的生产工艺,需要用到某种高吞吐的生产设备来实现“晶圆级别的微生产工艺”。这样一来,探针在插入到大脑以后可以确保很小的位移。其上用了多种具备生物相容性的薄膜(thin film)材料。主要的基质和电介质材料为聚酰亚胺(就是近期日本宣布禁止对韩国出口的一种半导体原材料)。每个薄膜阵列包含了两部分,分别是“线”区,和“传感”区。线区很容易理解,就是电极触点;传感区则是连接前文提到芯片的部分了。

这里所谓的薄膜“阵列”,每个阵列实际就包含了48或者96根线,每根线又有32个独立的电极。这么做是为了让线的截面足够小,这样一来也就让大脑组织的位移最小化了。其间需要用到步进式光刻(stepper lithography)和其他微生产工艺,这样通道数量才会比较密集。

20190722-204.jpg

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyjdfy.html