2、如何让机器听从人类的命令?
大家可能想问机器是如何听从人类的命令的,其实并不是机器或者算法本身,而是一群聪明的编程者智慧的结晶。他们与每一位国际象棋大师对话,汲取他们的经验,把其转化成代码和规则,组建了人类最强的象棋大师团队。但是这样的系统仅限于象棋,不能用于其他游戏。对于新的游戏,你需要重新开始编程。在某种程度上,这些技术仍然不够完美,并不是传统意义上的完全人工智能,其中所缺失的就是普适性和学习性。我们想通过“增强学习”来解决这一难题。在这里我解释一下增强学习,我相信很多人都了解这个算法。
首先,想像一下有一个主体,在AI领域我们称我们的人工智能系统为主体,它需要了解自己所处的环境,并尽力找出自己要达到的目的。这里的环境可以指真实事件,可以是机器人,也可以是虚拟世界,比如游戏环境;主体通过两种方式与周围环境接触;它先通过观察熟悉环境,我们起初通过视觉,也可以通过听觉、触觉等,我们也在发展多感觉的系统;
第二个任务,就是在此基础上,建模并找出最佳选择。这可能涉及到对未来的预期,想像,以及假设检验。这个主体经常处在真实环境中,当时间节点到了的时候,系统需要输出当前找到的最佳方案。这个方案可能或多或少会改变所处环境,从而进一步驱动观察的结果,并反馈给主体。
简单来说,这就是增强学习的原则,示意图虽然简单,但是其中却涉及了极其复杂的算法和原理。如果我们能够解决大部分问题,我们就能够搭建普适人工智能。这是因为两个主要原因:首先,从数学角度来讲,我的合伙人,一名博士,他搭建了一个系统叫‘AI-XI’,用这个模型,他证明了在计算机硬件条件和时间无限的情况下,搭建一个普适人工智能,需要的信息。另外,从生物角度来讲,动物和人类等,人类的大脑是多巴胺控制的,它在执行增强学习的行为。因此,不论是从数学的角度,还是生物的角度,增强学习是一个有效的解决人工智能问题的工具。
3、为什么围棋是人工智能难解之谜?
接下来,我要主要讲讲我们最近的技术,那就是去年诞生的阿尔法狗;希望在座的大家了解这个游戏,并尝试玩玩,这是个非常棒的游戏。围棋使用方形格状棋盘及黑白二色圆形棋子进行对弈,棋盘上有纵横各19条直线将棋盘分成361个交叉点,棋子走在交叉点上,双方交替行棋,以围地多者为胜。围棋规则没有多复杂,我可以在五分钟之内教给大家。这张图展示的就是一局已结束,整个棋盘基本布满棋子,然后数一下你的棋子圈出的空间以及对方棋子圈出的空间,谁的空间大,谁就获胜。在图示的这场势均力敌的比赛中,白棋一格之差险胜。
白棋以一格之差险胜。其实,了解这个游戏的最终目的非常难,因为它并不像象棋那样,有着直接明确的目标,在围棋里,完全是凭直觉的,甚至连如何决定游戏结束对于初学者来说,都很难。围棋是个历史悠久的游戏,有着3000多年的历史,起源于中国,在亚洲,围棋有着很深的文化意义。孔子还曾指出,围棋是每一个真正的学者都应该掌握的四大技能之一(琴棋书画),所以在亚洲围棋是种艺术,专家们都会玩。
如今,这个游戏更加流行,有4000万人在玩围棋,超过2000多个顶级专家,如果你在4-5岁的时候就展示了围棋的天赋,这些小孩将会被选中,并进入特殊的专业围棋学校,在那里,学生从6岁起,每天花12个小时学习围棋,一周七天,天天如此。直到你成为这个领域的专家,才可以离开学校毕业。这些专家基本是投入人生全部的精力,去揣摩学习掌握这门技巧,我认为围棋也许是最优雅的一种游戏了。