利用道格拉斯·普客法(DP法)压缩矢量多边形(C++)

经典的Douglas-Peucker算法(简称DP法)描述如下:

(1)在曲线首尾两点A,B之间连接一条直线AB,该直线为曲线的弦;

(2)得到曲线上离该直线段距离最大的点C,计算其与AB的距离d;

(3)比较该距离与预先给定的阈值threshold的大小,如果小于threshold,则该直线段作为曲线的近似,该段曲线处理完毕。

(4)如果距离大于阈值,则用C将曲线分为两段AC和BC,并分别对两段取信进行1~3的处理。

(5)当所有曲线都处理完毕时,依次连接各个分割点形成的折线,即可以作为曲线的近似

 

2.算法分析

①显然,整个过程是一个迭代过程,第四步时迭代,再次回到第一步。

②由于计算开方耗时,所以直接取d²作为评判值更加方便。

③DP法一般是化简一条曲线,本次化简的是多边形,实质是一条首尾相连的多边形,意味着曲线首尾两点的坐标相等。如果两点坐标相等,则第二步计算距离时会出现分母为0的问题。因此要换一个就近的点。

 

3.算法实现

 ①计算某点到已知两点的距离。

// 计算一点到一条直线(已知两点)的距离 double disP2L(CMyPoint* first, CMyPoint* last, CMyPoint* third) //first和last分别为线的两端,third是第三点 //CMyPoint是点的类型,可以换成CPoint { double x0 = first->Getx(); double y0 = first->Gety(); double x1 = last->Getx(); double y1 = last->Gety(); double x = third->Getx(); double y = third->Gety(); //diSquare是d²,不开方,耗时更短。 double disSuqare = ((y0 - y1)*x + (x1 - x0)*y + (x0*y1 - x1*y0))*((y0 - y1)*x + (x1 - x0)*y + (x0*y1 - x1*y0)) / ((x1 - x0)*(x1 - x0) + (y1 - y0)*(y1 - y0)); return disSuqare; }

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzfyps.html