3. 算法 --> 落地(面向应用工程师)
以往大家觉得算法落地就是一个类似软件开发的集成过程,其实对于AI类的应用并非那么简单。一般非常通用类的场景下,集成已有的模型去做一些识别比较成熟,如语音识别。但是往往商用类场景下,往往场景的适配度都不够好,虽然业界都在讨论万物识别的可能,但是都并不如意。所以从对于算法实际落地而言,都需要基于实际情况去不断优化。由于需要迭代优化的过程,那么应用工程师就必须要围绕思考场景下部署与训练的业务通路和方便性。一般数据科学家和算法工程师都是比较稀缺的,让数据科学家和算法工程师到每一个现场去做调优实施是不可行的,大量的现场实施工作必须有大量的应用工程师来完成。面向应用工程师去自优化模型并且不断迭代和调整模型的精度将是以往软件工程不太发生的问题。
所以这往往也需要一个系统体系化的平台,去支撑业务场景的快速迭代,从而提升应用工程师的效率。
从近20年的自身工作经历来说,商用落地一个AI业务其实是一项最复杂的系统工程的事情。它不仅仅是一个单独的算法开发这么简单,围绕商用AI落地的所需的相关技能特别多。
1、从IT工程师角度上,他需要聚焦资源效率和成本做不同的考虑,围绕底层资源管理、系统架构设计、分布式优化、资源调度管理、IT建设设计、端-边-云的部署与简便维护等做相应的设计,从而能很好的支撑算法应用落地;
2、从数据科学家角度上,他不仅仅要懂得去开发一个算法和参数优化能力,还要对行业场景做深入理解,具备行业Know-how,根据环境和数据的问题,不断迭代和建模,不断调整算法应对环境变化,达成相应的效果,期间会需要关注大量的伦理和道德,包括安全合规,模型的防攻击和可解释性类的问题等;
3、从应用工程师角度上,他不仅仅是一个应用集成,需要理解AI应用的不确定性,去选择合适的场景限制,并且根据实际的情况,去适应已有模型的能力。并且还能够有独立进行模型的训练迭代的能力,通过数据科学家预置好的流水线去迭代,自行现场去优化和迭代。从而达到真实场景下的落地。
综述,对于很多商业公司而言,他们更聚焦在AI的商用场景上面,往往会忽略AI平台的重要性。但往往对于有前瞻性的商业公司CTO/CIO们,他们都会考虑AI商业落地的时的AI平台选择。华为云ModelArts平台的初衷也是聚焦在AI商业落地的困难孕育而生,结合华为自有的昇腾芯片系统,集合ModelArts不断致力于AI的普惠。
后记经过几十年的发展,计算机科学已经成为一门成熟的学科,当前大学计算机系的组织架构图,每个计算机系大多有三拨人:理论、系统和AI(人工智能)。20年前的美国计算机圈子曾有一种说法:理论和系统的人互相看不起,但又同时看不起AI的人。AI这几年火了,但曾经也是被压迫者。哲学曾经孕育了科学,但一旦问题确定,就分离成为单独的科学。
正如Allen Newell所言,AI的历史是一串儿对立议题的斗争,如模拟与数字、串行与并行、取代与增强、语法与语义、机械论与目的论、生物学与活力论、工程与科学、符号与连续、逻辑与心理等,在每一个议题下有进一步可分的子议题,如在逻辑与心理下又有定理证明与问题求解等,有争议才有发展的空间。
我相信这个斗争的趋势依然会存在相当长的一段时间,我们只有适应这样的斗争、进步,不断增强自己的技术、迎接新技术的挑战,我们才能保持自己职业生涯的持续前进。因此,你可以利用业界大公司提供的一揽子培训计划,不断加强自己的技术深度,例如华为云面向所有向往AI的开发者,设计了一门优质课程《2020华为云AI实战营》,内容包括图像分类、物体检测、图像分割、人脸识别、OCR、视频分析、自然语言处理和语音识别这8大热门AI领域的基础知识、经典数据集和经典算法的介绍和实践。每章课程都是由华为云AI专家精心打造的实战案例,全流程覆盖模型训练、测试、评估,配合代码讲解和课后作业,帮助您掌握八大热门AI领域的模型开发能力,转型成为一名AI开发者。
作者:周明耀,九三学社社员,2004年毕业于浙江大学,工学硕士。现任华为云AI产品研发总监,著有《大话Java性能优化》、《深入理解JVM&G1 GC》、《技术领导力-如何带领一支软件研发团队》、《程序员炼成记》等。职业生涯从软件工程师起步,后转为分布式技术工程师、大数据技术工程师,2016年开始接触AI技术。微信号michael_tec。点击关注,第一时间了解华为云新鲜技术~