导语:非AI专业技术人员转型AI技术,或是作为一名学生学习AI技术开发,对每个有这样诉求和经历的人来说,都希望能够看到AI技术人才的成长经历,给出自己的真实经历分享。
前言参考塞缪尔.约翰逊(18世纪英国文学评论家、诗人,著有《英语大辞典》、《莎士比亚集》)的思路,“当一个人厌倦了学习技术,那他肯定也厌倦了IT行业;因为只有持续学习,才会有IT行业带给你的一切,包括金钱”。这是IT行业的实际情况,没有哪个人可以靠吃老本长期生存,AI技术更是如此。最近我在读《伦敦人》,书中讲述了200多位新老伦敦人对于伦敦这座城市的切身感受和故事,感觉应该就AI技术人才的成长写一篇,因此,有了本文。
非AI专业技术人员转型AI技术,或是作为一名学生学习AI技术,对每个有这样诉求和经历的人来说,可能都希望能够看到类似经历的人,给出自己的真实经历分享。
今天,我找了几位我的同事,包括我在内一共五位,我们都很有代表性,逐一介绍一下:
麦克周:2004年毕业于浙江大学,计算机专业硕士,15岁开始学习编程,使用的是Basic语言,读书期间主要写C语言,2004年毕业时写的是JSP代码(一种将Java语言嵌入在HTML代码中的编写方式),工作几年后转入分布式软件技术,再后来进入大数据技术领域,最近的4年时间从事AI平台产品研发工作。
Mr Qiu:算法相关专业硕士,工作五年时间。2013年进入杭州电子科技大学学习人工智能和电子信息技术,硕士方式主要以嵌入式和图像算法为主,毕业后进入安防行业的大华公司,再到华为,一直从事计算机视觉、算法移植优化、训练框架优化、机器学习等工作。
Hannah:曼彻斯特大学电子电气工程本科,伦敦大学学院数据科学硕士,毕业后加入华为公司,已经工作两年。华为公司作为国内私有云的先驱厂商之一,在数据科学这一领域有很多沉淀。因此,工作期间有机会参与多维度的工作,从算法研究落地,到平台开发,再到POC项目开发、现场建模PK等,在短时间内加深了对数据科学这一学科的认知。
Doctor Zeng:国内某重点大学博士,2018年华为Special Offer。本科毕业工作五年之后回到学校,继续自己的硕博攻读。硕士期间开始协助导师做项目,接触IT行业的十余年时间,具备丰富的信息系统项目开发与管理经验、人工智能领域的项目实战经验,并作为实验室技术骨干参与若干国家级、省部级项目。博士期间的主要研究领域是NLP、知识图谱,现担任华为某算法建模团队首席专家。
帆哥:20年ICT工作经验,4年信号处理机开发,5年企业数通产品研发,3年操作系统架构设计,3年大数据分析研究,5年AI产品规划,目前是华为云ModelArts首席产品管理专家。
正文 麦克周 知识不能单从经验中得出,而只能从理智的发明和观察到的事实两者比较中得出——爱因斯坦作为一位喜欢彻底搞清楚原理的软件工程师,我的每一次转型都在大量阅读和实际操作中完成。我给的建议是根据自己的实际情况,从全局性的到具体技术的书,一本本读,不要急。
我看的第一本书是尼克的《人工智能简史》,这本书几乎全面讲述人工智能的发展史,几乎覆盖人工智能学科的所有领域,包括人工智能的起源、自动定理证明、专家系统、神经网络、自然语言处理、遗传算法、深度学习、强化学习、超级智能、哲学问题和未来趋势等,当然,他不是一本动手教你编程的书,而是给你一个宏观印象,适合AI产品经理、CTO阅读。
如果你觉得还需要进一步拓展自己对技术的全局性理解,我建议你可以读Stephen Lucci和Danny Kopec一起编写的《人工智能(第二版)》,这本书有点像高校的人工智能相关专业教材,堪称“人工智能的百科全书”,全书涵盖了人工智能简史、搜索方法、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示、产生式系统、专家系统、机器学习和神经网络、遗传算法、自然语言处理、自动规划、机器人技术、高级计算机博弈、人工智能的历史和未来等主题。
看了全局化的知识后,建议你可以根据自己的实际情况选择书籍,周志华的《机器学习》、Ian等人合著的《深度学习》、Aston Zhang等人合著的《动手学深度学习》、郑泽宇等人合著的《TensorFlow:实战Google深度学习框架(第2版)》、Vishnu Subramanian的《PyTorch深度学习》,这些书都是不错的,当然还有其他很多优秀的著作,这里不展开介绍,更多取决于你当前的状态,你是想快速动手训练模型,还是想了解清楚原理,因人情况不同而异。