基于公共子序列的轨迹聚类(c#)

如今的世界中,想要研究人们的出行活动,可以利用智能手机或智能手环等个人设备生成的 GPS 数据进行研究。而在众多的研究方向中,出行的热点路线或者说经常出行的路线也比较受欢迎。采用热力图的方式对其进行研究具有许多优点。热力图给使用者的感觉就是特别直观,一眼便看出来哪些路径属于热迹(我们把热点路线,也就是重复度高的路线称为热迹)。如下图所示:

基于公共子序列的轨迹聚类(c#)

(图片来自网上,侵删)

从图中我们一眼便能够找出两条粗壮的热迹。这表示有某种物体经常沿着两条路线运动。但对于计算机来说,要从图中找出这两条热迹,并加以区分形成两条完整的路线可不是一件容易的事。所以我们只能直接从轨迹上入手。接下来将介绍利用公共序列进行轨迹聚类的方法。

该聚类方法的核心思想是相似的轨迹在地理空间中占有的位置基本一致,轨迹越相似其共有的位置占原轨迹空间的比重越大,并且随着我们划分轨迹的精度降低而提高。

数据准备 Gps 数据准备

研究轨迹聚类,最基本的要求就是拥有大量的轨迹数据。幸运的,我从网上的项目中找到了公开的 Gps 数据。为什么说是幸运的?在此之前,我曾写过一个 App,以期收集自己的出行轨迹进行研究。该应用的确达到了预期,但困难的是手机要开启 Gps 才能得到比较精准的轨迹数据,这显然提高了手机电量的要求。除此之外,收集众多的轨迹需要大量时间、上班族轨迹相对固定等一系列因素导致收集自己的轨迹计划夭折。而在网上找到的数据完全满足研究要求。这些数据来自于微软亚洲研究院的项目 Geolife,是每个人都能够获取的。该数据以 plt 为文件后缀存储,但实际上就是普通的文本文件,并且除了前六行外就是 csv 格式的。

基于公共子序列的轨迹聚类(c#)

轨迹数据模型类

这是本项目中用到的数据类模型

//轨迹数据点通用模型(以接口定义) public interface IGeoInfoModel { float Latitude { get; set; } float Longitude { get; set; } } //轨迹类 public class Trajectory { public Guid Id { get; } public Trajectory() { Id = Guid.NewGuid(); } public string Name { get; set; } public List<IGeoInfoModel> GeoPoints { get; set; }//轨迹点集 public List<string> GeoCodes { get; set; }//轨迹编码集 public Trajectory Parent { get; set; }//轨迹的父亲 //轨迹的兄弟姐妹,该集合中的轨迹与该轨迹相似度极高(线程安全集合) public ConcurrentBag<Trajectory> Siblings { get; } = new ConcurrentBag<Trajectory>(); //轨迹的后辈,该集合中的轨迹与该轨迹具有一定相似性,但低于兄弟姐妹(线程安全集合) public ConcurrentBag<Trajectory> Children { get; } = new ConcurrentBag<Trajectory>(); public float MinLat => GeoPoints.Min(t => t.Latitude); public float MinLon => GeoPoints.Min(t => t.Longitude); public float MaxLat => GeoPoints.Max(t => t.Latitude); public float MaxLon => GeoPoints.Max(t => t.Longitude); public int Level { get; set; }//轨迹在族谱中的代数/层数 public string LevelTag { get; set; }//代数标签,用于打印 } 轨迹序列产生(轨迹的低分辨率/低精度描述)

要找轨迹间的公共子序列,首先得有可以描述轨迹的序列的方法。该序列具有比原始轨迹低的精度,但基本可以描述一条轨迹的空间位置。下面介绍两种该项目中用到的编码方法。

保留高位小数法

最简单的就是仅保留经纬度的高位小数来进行编码。这种方式的产生的数据的精度调节有限,但也能满足一般需求。以坐标(1.2222,33.44444)来说保留三位小数后可得“1.222_33.444”,中间添加下划线是保留反解码的需求。

var digits = 3; var dig = $"F{digits}"; var code = $"{t.Latitude.ToString(dig)}_{t.Longitude.ToString(dig)}" GeoHash 法

GeoHash 是公认的计算经纬度编码的有效方法,并且精度调节能力较强。读者可以从这里进行了解Geohash 精度和原理。除此之外,GeoHash 可以得到较短的字符串,还是以坐标(1.2222,33.44444)来说,得到 7 位的字符编码“s8pycn3”。该hash码精度和直接取上面取三位小数的方式上精度接近,但字符长却缩减了 5 位。这利于高效的查找公共子序列。在 c#中我们直接 nuget 命令添加 nupkg 包NGeoHash.DotNetCore即可获得 GeoHash 的计算方法。

var code = GeoHash.Encode(1.2222,33.44444, 7); 子序列的最终形式

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpjjjf.html