我们用融合分类器为目标数据集中的图片对评分,构造三元组输入RankNet,其中Si是查询图,Sj是在与Si融合相似度top1 - top25中抽取的图片,Sk是在与Si融合相似度top25 - top50中抽取的图片,喂给RankNet学习,使得resnet52部分卷积层能充分学习到目标场景上的视觉特征。
Learning to Rank效果 源数据集 目标数据集 纯 图像 结果 融合 时空 结果rank-1 rank-5 rank-10 rank-1 rank-5 rank-10
CUHK01 GRID 17.40 33.90 41.10 50.90 78.60 88.30
VIPeR GRID 18.50 31.40 40.50 52.70 81.70 89.20
Market1501 GRID 22.30 38.10 47.20 60.40 87.30 93.40
GRID Market1501 22.38 39.25 48.07 58.22 72.33 76.84
VIPeR Market1501 25.23 41.98 50.33 59.17 73.49 78.62
CUHK01 Market1501 30.58 47.09 54.60 60.75 74.44 79.25
对比Learning to Rank前的效果,准确率都提升了,GRID数据集上提升尤为明显。
对比SOA有监督方法一方面,我们将上面的跨数据集无监督算法应用在GRID和Market1501两个数据集上,与当前最好的方法进行对比,另一方面,我们还测试了有监督版本的效果,有监督即源数据集与目标数据集一致,如GRID预训练->GRID融合时空,效果如下:
GRID
Method Rank 1JLML 37.5
TFusion无监督 60.4
TFusion有监督 64.1
由于在这个数据集上时空规律十分明显(正确时间差都集中在一个很小的范围内),可以过滤掉大量错误分类结果,所以准确率甚至碾压了全部有监督方法。
Market1501
Method Rank 1S-CNN 65.88
DLCE 79.5
SVDNet 82.3
JLML 88.8
TFusion无监督 60.75
TFusion有监督 73.13
在Market1501这个数据集上,无监督的方法逼近2016年的有监督方法(我们的图像分类器只是一个ResNet52),有监督的方法超越2016年的有监督方法,虽然比不上2017年的有监督方法,但是如果结合其他更好的图像分类器,应该能有更好的效果。
对比SOA无监督方法我们向UMDL的作者要到了代码,并复现了如下几组跨数据集迁移实验
Method Source Target Rank1UMDL Market1501 GRID 3.77
UMDL CUHK01 GRID 3.58
UMDL VIPeR GRID 3.97
UMDL GRID Market1501 30.46
UMDL CUHK01 Market1501 29.69
UMDL VIPeR Market1501 30.34
TFusion Market1501 GRID 60.4
TFusion CUHK01 GRID 50.9
TFusion VIPeR GRID 52.7
TFusion GRID Market1501 58.22
TFusion CUHK01 Market1501 59.17
TFusion VIPeR Market1501 60.75
其中,UMDL迁移到Market1501的结果与悉尼科技大学hehefan与LiangZheng复现出来的效果差不多,所以我们的复现是靠谱的。
可以看到,无监督的TFusion全面碾压UMDL。
更多详细实验结果可以到论文中细看。
多次迭代迁移学习