回顾一下整个架构,我们用图像分类器估算时空模型,得到融合模型,用融合模型反过来提升图像分类器模型,图像分类器又能继续增强融合模型,形成一个闭环,理论上这个闭环循环多次,能让图像分类器无限逼近融合分类器,从而得到一个目标场景中也很强大的图像分类器,因此我们做了多次迭代的尝试:
在从目前的实验效果看,第一次迁移学习提升比较大,后面提升就比较小了,这个现象往好了说可以是收敛快,但往坏了说,虽然图像分类器得到了提升,但是没有出现图像分类器提升大于融合分类器的现象,所以这里边应该还有东西可挖。
后记调研,可视化,找思路,找数据集,做实验,Debug,调参,写论文,九个月写一篇CVPR,这也是我们实验室第一篇CCF A类论文,算是来之不易的开山之作了。现在我们在Person Reid领域继续探索,正在搭建一个基于树莓派的摄像头网络,构造自己的数据集,并在这个基础上开展行人检测,多模态数据融合,轻量级深度模型,分布式协同终端,视频哈希,图像索引等一系列研究,欢迎follow我的Github,也欢迎持续关注我们实验室的博客
看了这么久,还不给我Github点star!