文本分类,数据挖掘和机器学习 (11)

  意思就是一个变量可能的变化越多(反而跟变量具体的取值没有任何关系,只和值的种类多少以及发生概率有关),它携带的信息量就越大(因此我一直觉得我们的政策法规信息量非常大,因为它变化很多,基本朝令夕改,笑)。

  对分类系统来说,类别C是变量,它可能的取值是C1,C2,……,Cn,而每一个类别出现的概率是P(C1),P(C2),……,P(Cn),因此n就是类别的总数。此时分类系统的熵就可以表示为:

文本分类入门(十一)特征选择方法之信息增益

有同学说不好理解呀,这样想就好了,文本分类系统的作用就是输出一个表示文本属于哪个类别的值,而这个值可能是C1,C2,……,Cn,因此这个值所携带的信息量就是上式中的这么多。

  信息增益是针对一个一个的特征而言的,就是看一个特征t,系统有它和没它的时候信息量各是多少,两者的差值就是这个特征给系统带来的信息量,即增益。系统含有特征t的时候信息量很好计算,就是刚才的式子,它表示的是包含所有特征时系统的信息量。

  问题是当系统不包含t时,信息量如何计算?我们换个角度想问题,把系统要做的事情想象成这样:说教室里有很多座位,学生们每次上课进来的时候可以随便坐,因而变化是很大的(无数种可能的座次情况);但是现在有一个座位,看黑板很清楚,听老师讲也很清楚,于是校长的小舅子的姐姐的女儿托关系,把这个座位定下来了,每次只能给她坐,别人不行,此时情况怎样?对于座次的可能情况来说,我们很容易看出以下两种情况是等价的:(1)教室里没有这个座位;(2)教室里虽然有这个座位,但其他人不能坐(因为反正它也不能参与到变化中来,它是不变的)。

  对应到我们的系统中,就是下面的等价:(1)系统不包含特征t;(2)系统虽然包含特征t,但是t已经固定了,不能变化。

  我们计算分类系统不包含特征t的时候,就使用情况(2)来代替,就是计算当一个特征t不能变化时,系统的信息量是多少。这个信息量其实也有专门的名称,就叫做“条件熵”,条件嘛,自然就是指“t已经固定“这个条件。

  但是问题接踵而至,例如一个特征X,它可能的取值有n多种(x1,x2,……,xn),当计算条件熵而需要把它固定的时候,要把它固定在哪一个值上呢?答案是每一种可能都要固定一下,计算n个值,然后取均值才是条件熵。而取均值也不是简单的加一加然后除以n,而是要用每个值出现的概率来算平均(简单理解,就是一个值出现的可能性比较大,固定在它上面时算出来的信息量占的比重就要多一些)。

因此有这样两个条件熵的表达式:

文本分类入门(十一)特征选择方法之信息增益

  这是指特征X被固定为值xi时的条件熵,

文本分类入门(十一)特征选择方法之信息增益

  这是指特征X被固定时的条件熵,注意与上式在意义上的区别。从刚才计算均值的讨论可以看出来,第二个式子与第一个式子的关系就是:

文本分类入门(十一)特征选择方法之信息增益

  具体到我们文本分类系统中的特征t,t有几个可能的值呢?注意t是指一个固定的特征,比如他就是指关键词“经济”或者“体育”,当我们说特征“经济”可能的取值时,实际上只有两个,“经济”要么出现,要么不出现。一般的,t的取值只有t(代表t出现)和

文本分类入门(十一)特征选择方法之信息增益

(代表t不出现),注意系统包含t但t 不出现与系统根本不包含t可是两回事。

  因此固定t时系统的条件熵就有了,为了区别t出现时的符号与特征t本身的符号,我们用T代表特征,而用t代表T出现,那么:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgzjpz.html