对中文文本来说,到此就已初审合格,可以参加训练了。而英文文本还有进一步简化和压缩的空间。我们都知道,英文中同一个词有所谓词形的变化(相对的,词义本身却并没有变),例如名词有单复数的变化,动词有时态的变化,形容词有比较级的变化等等,还包括这些变化形式的某种组合。而正因为词义本身没有变化,仅仅词形不同的词就不应该作为独立的词来存储和和参与分类计算。去除这些词形不同,但词义相同的词,仅保留一个副本的步骤就称为“词根还原”,例如在一篇英文文档中,经过词根还原后,“computer”,“compute”,“computing”,“computational”这些词全都被处理成“compute”(大小写转换也在这一步完成,当然,还要记下这些词的数目作为compute的词频信息)。
经过预处理步骤之后,原始文档转换成了非常节省资源,也便于计算的形式,后面的训练阶段大同小异。
(九)特征选择算法之开方检验
前文提到过,除了分类算法以外,为分类文本作处理的特征提取算法也对最终效果有巨大影响,而特征提取算法又分为特征选择和特征抽取两大类,其中特征选择算法有互信息,文档频率,信息增益,开方检验等等十数种,这次先介绍特征选择算法中效果比较好的开方检验方法。
大家应该还记得,开方检验其实是数理统计中一种常用的检验两个变量独立性的方法。
开方检验最基本的思想就是通过观察实际值与理论值的偏差来确定理论的正确与否。具体做的时候常常先假设两个变量确实是独立的(行话就叫做“原假设”),然后观察实际值(也可以叫做观察值)与理论值(这个理论值是指“如果两者确实独立”的情况下应该有的值)的偏差程度,如果偏差足够小,我们就认为误差是很自然的样本误差,是测量手段不够精确导致或者偶然发生的,两者确确实实是独立的,此时就接受原假设;如果偏差大到一定程度,使得这样的误差不太可能是偶然产生或者测量不精确所致,我们就认为两者实际上是相关的,即否定原假设,而接受备择假设。
那么用什么来衡量偏差程度呢?假设理论值为E(这也是数学期望的符号哦),实际值为x,如果仅仅使用所有样本的观察值与理论值的差值x-E之和
来衡量,单个的观察值还好说,当有多个观察值x1,x2,x3的时候,很可能x1-E,x2-E,x3-E的值有正有负,因而互相抵消,使得最终的结果看上好像偏差为0,但实际上每个都有偏差,而且都还不小!此时很直接的想法便是使用方差代替均值,这样就解决了正负抵消的问题,即使用
这时又引来了新的问题,对于500的均值来说,相差5其实是很小的(相差1%),而对20的均值来说,5相当于25%的差异,这是使用方差也无法体现的。因此应该考虑改进上面的式子,让均值的大小不影响我们对差异程度的判断
式(1)
上面这个式子已经相当好了。实际上这个式子就是开方检验使用的差值衡量公式。当提供了数个样本的观察值x1,x2,……xi ,……xn之后,代入到式(1)中就可以求得开方值,用这个值与事先设定的阈值比较,如果大于阈值(即偏差很大),就认为原假设不成立,反之则认为原假设成立。
在文本分类问题的特征选择阶段,我们主要关心一个词t(一个随机变量)与一个类别c(另一个随机变量)之间是否相互独立?如果独立,就可以说词t对类别c完全没有表征作用,即我们根本无法根据t出现与否来判断一篇文档是否属于c这个分类。但与最普通的开方检验不同,我们不需要设定阈值,因为很难说词t和类别c关联到什么程度才算是有表征作用,我们只想借用这个方法来选出一些最最相关的即可。