表达式左边为同类距离 ,右边为不同的类之间的距离。使用梯度下降法优化的过程就是让类内距离不断下降,类间距离不断提升,这样损失函数才能不断地缩小。
上面的几个算法都是比较传统老旧的,下面说一下比较新的算法。
4. L-softmax
前面Softmax loss函数没有考虑类间距离,Center loss函数可以使类内变得紧凑,但没有类间可分,而Triplet loss函数比较耗时,就产生了一下新的算法。
L-softmax函数开始就做了比较精细的改动,从softmax 函数log里面的
表达式左边为同类距离 ,右边为不同的类之间的距离。使用梯度下降法优化的过程就是让类内距离不断下降,类间距离不断提升,这样损失函数才能不断地缩小。
上面的几个算法都是比较传统老旧的,下面说一下比较新的算法。
4. L-softmax
前面Softmax loss函数没有考虑类间距离,Center loss函数可以使类内变得紧凑,但没有类间可分,而Triplet loss函数比较耗时,就产生了一下新的算法。
L-softmax函数开始就做了比较精细的改动,从softmax 函数log里面的
内容版权声明:除非注明,否则皆为本站原创文章。