所谓排序算法,即通过特定的算法因式将一组或多组数据按照既定模式进行重新排序。这种新序列遵循着一定的规则,体现出一定的规律,因此,经处理后的数据便于筛选和计算,大大提高了计算效率。对于排序,我们首先要求其具有一定的稳定性,即当两个相同的元素同时出现于某个序列之中,则经过一定的排序算法之后,两者在排序前后的相对位置不发生变化。换言之,即便是两个完全相同的元素,它们在排序过程中也是各有区别的,不允许混淆不清。
希尔排序1959 年 77 月,美国辛辛那提大学的数学系博士 Donald Shell 在 《ACM 通讯》上发表了希尔排序算法,成为首批将时间复杂度降到\(O(n^2)\)以下的算法之一。虽然原始的希尔排序最坏时间复杂度仍然是\(O(n^2)\),但经过优化的希尔排序可以达到\(O(n^{1.3})\)甚至 \(O(n^{7/6})\)。
希尔排序本质上是对插入排序的一种优化,它利用了插入排序的简单,又克服了插入排序每次只交换相邻两个元素的缺点。它的基本思想是:
将待排序数组按照一定的间隔分为多个子数组,每组分别进行插入排序。这里按照间隔分组指的不是取连续的一段数组,而是每跳跃一定间隔取一个值组成一组
逐渐缩小间隔进行下一轮排序
最后一轮时,取间隔为 11,也就相当于直接使用插入排序。但这时经过前面的「宏观调控」,数组已经基本有序了,所以此时的插入排序只需进行少量交换便可完成
举个例子,对数组[8, 3, 34, 6, 4, 1, 44, 45, 43, 2, 23]进行希尔排序的过程如下:
第一遍(5 间隔排序):按照间隔 5 分割子数组,共分成五组,分别是[8, 1, 23],[3, 44],[34, 45],[6, 43],[4, 2]。对它们进行插入排序,排序后它们分别变成:[1, 8, 23],[3, 44],[34, 45],[6, 43],[2, 4],此时整个数组变成 [1, 3, 34, 6, 2, 8, 44, 45, 43, 4, 23]
第二遍(2 间隔排序):按照间隔 2 分割子数组,共分成两组,分别是[1, 34, 2, 44, 43, 23],[3, 6, 8, 45, 4]。对他们进行插入排序,排序后它们分别变成:[1, 2, 23, 34, 43, 44],[3, 4, 6, 8, 45],此时整个数组变成[1, 3, 2, 4, 23, 6, 34, 8, 43, 45, 44]。这里有一个非常重要的性质:当我们完成 2 间隔排序后,这个数组仍然是保持 5 间隔有序的。也就是说,更小间隔的排序没有把上一步的结果变坏。
第三遍(11 间隔排序,等于直接插入排序):按照间隔 1 分割子数组,分成一组,也就是整个数组。对其进行插入排序,经过前两遍排序,数组已经基本有序了,所以这一步只需经过少量交换即可完成排序。排序后数组变成[1, 2, 3, 4, 6, 8, 23, 34, 43, 44, 45],整个排序完成。
const sort = arr => { const len = arr.length; if (len < 2) { return arr; } let gap = Math.floor(len / 2); while (gap > 0) { for (let i = gap; i < len; i++) { let j = i; let cur = arr[i]; while (j >= 0 && cur < arr[j - gap]) { arr[j] = arr[j - gap]; j -= gap; } arr[j] = cur; } gap = Math.floor(gap / 2); } return arr; } 堆排序堆排序过程如下:
用数列构建出一个大顶堆,取出堆顶的数字(放到待排序数组的最后);
调整剩余的数字,构建出新的大顶堆,再次取出堆顶的数字;
循环往复,完成整个排序。
function sort(arr) { for (let i = Math.floor(arr.length / 2) - 1; i >= 0; i--) { adjustHeap(arr, i, arr.length) } for (let j = arr.length - 1; j > 0; j--) { [arr[0], arr[j]] = [arr[j], arr[0]] adjustHeap(arr, 0, j) } } function adjustHeap(arr, i, length) { let tmp = arr[i] for (let k = i * 2 + 1; k < length; k = k * 2 + 1) { if (k + 1 < length && arr[k] < arr[k + 1]) { k++; } if (arr[k] > tmp) { arr[i] = arr[k]; i = k; } else { break; } arr[i] = tmp; } } 快速排序快速排序算法由 C. A. R. Hoare 在 1960 年提出。它的时间复杂度也是 \(O(nlogn)\),但它在时间复杂度为 \(O(nlogn)\) 级的几种排序算法中,大多数情况下效率更高,所以快速排序的应用非常广泛。再加上快速排序所采用的分治思想非常实用,使得快速排序深受面试官的青睐,所以掌握快速排序的思想尤为重要。
快速排序算法的基本思想是:
从数组中取出一个数,称之为基数(pivot)
遍历数组,将比基数大的数字放到它的右边,比基数小的数字放到它的左边。遍历完成后,数组被分成了左右两个区域
将左右两个区域视为两个数组,重复前两个步骤,直到排序完成
事实上,快速排序的每一次遍历,都将基数摆到了最终位置上。第一轮遍历排好 1 个基数,第二轮遍历排好 2 个基数(每个区域一个基数,但如果某个区域为空,则此轮只能排好一个基数),第三轮遍历排好 4 个基数(同理,最差的情况下,只能排好一个基数),以此类推。总遍历次数为 \(logn\)~\(n\) 次,每轮遍历的时间复杂度为 \(O(n)\),所以很容易分析出快速排序的时间复杂度为 \(O(nlogn)\) ~\(O(n^2)\),平均时间复杂度为 \(O(nlogn)\)。
const partition = (arr, start, end) => { let pivot = arr[start]; // 取第一个数为基数 let left = start + 1; // 从第二个数开始分区 let right = end; // 右边界 // left、right 相遇时退出循环 while (left < right) { // 找到第一个大于基数的位置 while (left < right && arr[left] <= pivot) left++; // 交换这两个数,使得左边分区都小于或等于基数,右边分区大于或等于基数 if (left != right) { [arr[left], arr[right]] = [arr[right], arr[left]]; right--; } } // 如果 left 和 right 相等,单独比较 arr[right] 和 pivot if (left == right && arr[right] > pivot) right--; // 将基数和中间数交换 if (right != start) [arr[left], pivot] = [pivot, arr[left]]; // 返回中间值的下标 return right; } const quickSort = (arr, start, end) => { if (start >= end) return; const middle = partition(arr, start, end) quickSort(arr, start, middle - 1); quickSort(arr, middle + 1, end); } const sort = arr => { quickSort(arr, 0, arr.length -1); } 归并排序