Java回收机制概述

Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区。

垃圾回收机制的引入可以有效的防止内存泄露、保证内存的有效使用,也大大解放了Java程序员的双手,使得他们在编写程序的时候不再需要考虑内存管理。本文着重介绍了判断一个对象是否可以被回收的两种经典算法,并详述了四种典型的垃圾回收算法的基本思想及其直接应用——垃圾收集器,最后结合内存回收策略介绍了内存分配规则。
本文内容是基于 JDK 1.6 的,不同版本虚拟机之间也许会有些许差异,但不影响我们对JVM垃圾回收机制的整体把握和了解。

一、垃圾回收机制的意义

  实际上,Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的堆区。关于对象分配内存问题,笔者的博文《JVM 内存模型概述》已经阐述了 如何划分可用空间及其涉及到的线程安全问题,本文将结合垃圾回收策略进一步给出 内存分配规则。另外,我们知道垃圾回收机制是Java语言一个显著的特点,其可以有效的防止内存泄露、保证内存的有效使用,从而使得Java程序员在编写程序的时候不再需要考虑内存管理问题。Java 垃圾回收机制要考虑的问题很复杂,本文阐述了其三个核心问题,包括:

那些内存需要回收?(对象是否可以被回收的两种经典算法: 引用计数法 和 可达性分析算法)

什么时候回收? (堆的新生代、老年代、永久代的垃圾回收时机,MinorGC 和 FullGC)

如何回收?(三种经典垃圾回收算法(标记清除算法、复制算法、标记整理算法)及分代收集算法 和 七种垃圾收集器)

在探讨Java垃圾回收机制之前,我们首先应该记住一个单词:Stop-the-World。Stop-the-world意味着 JVM由于要执行GC而停止了应用程序的执行,并且这种情形会在任何一种GC算法中发生。当Stop-the-world发生时,除了GC所需的线程以外,所有线程都处于等待状态直到GC任务完成。事实上,GC优化很多时候就是指减少Stop-the-world发生的时间,从而使系统具有 高吞吐 、低停顿 的特点。

 

二. 如何确定一个对象是否可以被回收?

1、 引用计数算法:判断对象的引用数量

  引用计数算法是通过判断对象的引用数量来决定对象是否可以被回收。

  引用计数算法是垃圾收集器中的早期策略。在这种方法中,堆中的每个对象实例都有一个引用计数。当一个对象被创建时,且将该对象实例分配给一个引用变量,该对象实例的引用计数设置为 1。当任何其它变量被赋值为这个对象的引用时,对象实例的引用计数加 1(a = b,则b引用的对象实例的计数器加 1),但当一个对象实例的某个引用超过了生命周期或者被设置为一个新值时,对象实例的引用计数减 1。特别地,当一个对象实例被垃圾收集时,它引用的任何对象实例的引用计数器均减 1。任何引用计数为0的对象实例可以被当作垃圾收集。

  引用计数收集器可以很快的执行,并且交织在程序运行中,对程序需要不被长时间打断的实时环境比较有利,但其很难解决对象之间相互循环引用的问题。如下面的程序所示,对象objA和objB之间的引用计数永远不可能为 0,那么这两个对象就永远不能被回收。

 public class ReferenceCountingGC {    public Object instance = null; public static void testGC(){ ReferenceCountingGC objA = new ReferenceCountingGC (); ReferenceCountingGC objB = new ReferenceCountingGC (); // 对象之间相互循环引用,对象objA和objB之间的引用计数永远不可能为 0 objB.instance = objA; objA.instance = objB; objA = null; objB = null; System.gc(); } }

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyzpjj.html