SVM支持向量机详解

支持向量机(support vector machines, SVM)是二分类算法,所谓二分类即把具有多个特性(属性)的数据分为两类,目前主流机器学习算法中,神经网络等其他机器学习模型已经能很好完成二分类、多分类,学习和研究SVM,理解SVM背后丰富算法知识,对以后研究其他算法大有裨益;在实现SVM过程中,会综合利用之前介绍的一维搜索、KKT条件、惩罚函数等相关知识。本篇首先通过详解SVM原理,后介绍如何利用python从零实现SVM算法。

为便于理解,假设样本有两个属性,可以把属性值分别对应到二维空间轴的x,y轴上,如下图所示:

二维坐标.png

实例中样本明显的分为两类,黑色实心点不妨为类别一,空心圆点可命名为类别二,在实际应用中会把类别数值化,比如类别一用1表示,类别二用-1表示,称数值化后的类别为标签。每个类别分别对应于标签1、还是-1表示没有硬性规定,可以根据自己喜好即可,需要注意的是,由于SVM算法标签也会参与数学运算,这里不能把类别标签设为0。

还是对应于上图,如果能需要找到一条直线,将上述的实心点与空心点分为两个部分,当下次还有其他样本点时,将其属性值作为坐标绘制到坐标轴上后,根据新样本点与直线位置关系,就可以判断出其类别。满足这样直线有无数条,SVM是要找到最合适一条:观察上图,绿线肯定不行,该条分类直线在没有验证集前提下已经错了;而蓝色线和红色都可以实现分类,蓝色线与实心黑点靠的太近,相比而言,红色线更‘公允’些。红色线就是SVM需要找出的分类直线,数学语言描述红线的‘公允’特性可表述为:将黑点和空心点视为两个集合,如果找到一个直线,使得黑点集合中的一些点离直线最近,这些点到该直线距离为d;空心点集合中也能找到一系列的点,离直线最近,距离同样也是d,则该直线就是我们要找到线性分类器,同时称两个集合中离直线最近的点为支持向量,SVM支持向量机就是由此得名的。

一些算法书籍中这样描述SVM算法,找出一个直线,使得直线与两边集合最近的点的间隔空间最大,从上图也可以看出来,黑色点离蓝线最近的点,其距离小于到红线距离(直角的斜边)。能找到支持向量就一定找到分类直线,反之亦然,以上是针对两个属性值,通过观察二维平面即可以引出SVM的算法的特点,如果样本属性非常多呢,如何归纳算法的规律性?首先说下凸集可分离定理,该定理不仅是SVM的核心理论支持,更是机器学习算法的基石。

一、凸集可分离定理

还是以二维空间为例,中学时代我们就学过直线方程,比如有直线方程y=2x-1,如下图所示:

超平面.png

把直线方程y=2x-1写成内积形式:

内积一.gif

向量(-2,1)对应上图中OA向量,把OA向量变为单位向量,即方向与OA相同,模为1向量OS,S的坐标为 

坐标1.gif

,将直线方程两边同除以

52.gif

,可得:

(x,y)代表直线y=2x-1上任意一点,上式说明y=2x-1上任意一点与单位向量S:

坐标1.gif

的内积是

标准内积1.gif

,图中向量OP的长度为,取负号是因为OP向量方向与OS方向相反;上图中向量v1、v2在OS向量上投影都是OP,这个例子说明:通过引入一个向量OS,直线y=2x-1上无数的点在向量OS上都可以用

标准内积1.gif

来表示,或者说,直线y=2x-1在向量OS上都可以用坐标(0,

标准内积1.gif

)表示。通过内积投影的方式,可以把高维数据变为向量上一个实数,这是一个线性泛函的过程,数学领域中常用内积来降低数据维度,把多维数据处理成一个实数便于后期分析、处理。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzjjdd.html