常见排序算法及对应的时间复杂度和空间复杂度 (5)

  堆的定义下:具有n个元素的序列 (h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

  思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

2、实例

初始序列:46,79,56,38,40,84

建堆:

这里写图片描述

交换,从堆中踢出最大数

这里写图片描述

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

3、java实现

package HeapSort; import java.util.Arrays; public class HeapSort { public static void main(String[] args) { int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64 }; int arrayLength = a.length; // 循环建堆 for (int i = 0; i < arrayLength - 1; i++) { // 建堆 buildMaxHeap(a, arrayLength - 1 - i); // 交换堆顶和最后一个元素 swap(a, 0, arrayLength - 1 - i); System.out.println(Arrays.toString(a)); } } // 对data数组从0到lastIndex建大顶堆 public static void buildMaxHeap(int[] data, int lastIndex) { // 从lastIndex处节点(最后一个节点)的父节点开始 for (int i = (lastIndex - 1) / 2; i >= 0; i--) { // k保存正在判断的节点 int k = i; // 如果当前k节点的子节点存在 while (k * 2 + 1 <= lastIndex) { // k节点的左子节点的索引 int biggerIndex = 2 * k + 1; // 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 if (biggerIndex < lastIndex) { // 若果右子节点的值较大 if (data[biggerIndex] < data[biggerIndex + 1]) { // biggerIndex总是记录较大子节点的索引 biggerIndex++; } } // 如果k节点的值小于其较大的子节点的值 if (data[k] < data[biggerIndex]) { // 交换他们 swap(data, k, biggerIndex); // 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k = biggerIndex; } else { break; } } } } // 交换 private static void swap(int[] data, int i, int j) { int tmp = data[i]; data[i] = data[j]; data[j] = tmp; } } ③ 交换排序

(1)冒泡排序

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzpwzs.html