数据分析中常见的6大类分析方法(建议收藏) (2)

所谓品类树就是指依据产品的特点,划分为的大、中、小分类结构。品类树是品类差异化的基础,必须结合经营管理的实际情况进行落地。例如要了解与物料大中小类相关的业务情况,可以按品类树钻取分析等。某大型集团物料品类树见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图6 某大型集团物料品类树示例

2.3按其他维度钻取

例如对于各地区各年度的销售情况,可以生成地区与年度的合计行(向上钻取)。例如,用户分析“各地区、城市的销售情况”时,可以对某一个城市的销售额细分为各个年度的销售额,对某一年度的销售额,可以继续细分为各个季度的销售额(向下钻取)。

常规比较分析

所谓常规比较分析,是指一般比较常见的对比分析方法,例如有时间趋势分析、构成分析、同类比较分析、多指标分析、相关性分析、分组分析、象限分析等。

3.1时间趋势分析

所谓时间趋势分析是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。它是一种定量预测方法,亦称简单外延方法,在统计学中作为一种常用的预测手段被广泛应用。例如,记录了某地区第一个月,第二个月,…,第N个月的降雨量,利用时间趋势分析方法,可以对未来各月的雨量进行预报。见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图7 某地未来各月月降水量预测

3.2构成分析

在统计分组的基础上计算结构指标,来反映被研究总体构成情况的方法。应用构成分析法,可从不同角度研究投资构成及其变动趋势,观察投资构成与产业结构、社会需要构成的适应关系,可以揭示事物由量变到质变的具体过程。 例如要了解某公司各季度销售收入情况,可以使用构成分析,见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图8 某公司各季度销售情况概览

3.3同类比较分析

在同类事物之间通过比较分析揭示其相异点而产生新认识的方法。在实际研究中人们经常会遇到一些表面上相同但实际上并不同的现象,如果对这些现象不仔细地进行比较研究,就有可能以假当真,或以真当假。因此,在分析研究中对新发现的现象不要轻易地归类,应该认真地反复进行比较研究,尤其对那些小的差异点,更不能放过。同类比较分析经常应用到与竞争对手分析中,例如食品行业同一类食品的销量比较,鞋服行业同一类型鞋子的对比分析等。

3.4多指标分析

为统计方法的一种,包含了许多的方法,最基本的为单指标,再延伸出来的多指标分析。统计资料中有多个指标同时存在时的统计分析,是统计学的重要分支,是单指标统计的发展。 例如某公司经营综合情况就可以使用多指标分析,见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图9 某公司经营综合情况分析

3.5相关性分析

指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析。例如某年对国内各城市人均GDP与商品住宅成交均价的相关性分析,见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图10 各城市人均GDP与商品住宅成交均价相关分析

3.6分组分析

指将客体(问卷、特征、现实)按研究要求进行分类编组,使得同组客体之间的差别小于各种客体之间的差别,进而进行分析研究的方法。其特点在于不依赖于原始资料分布的正常性假设,可以按任意规律分布,在分析既包括数量资料,又包括质量资料的混合资料时尤为重要。例如某公司上半年每月销量与收入情况分析,见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图11 某公司上半年每月销量与收入情况分析

3.7象限分析

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zypjfx.html