数据分析中常见的6大类分析方法(建议收藏) (4)

利用几种主要的财务比率之间的关系来综合地分析企业的财务状况。具体来说,它是一种用来评价公司赢利能力和股东权益回报水平,从财务角度评价企业绩效的一种经典方法。其基本思想是将企业净资产收益率逐级分解为多项财务比率乘积,这样有助于深入分析比较企业经营业绩。见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图16 杜邦分析法算净资产收益率

5.2财务指标分析

是指总结和评价企业财务状况与经营成果的分析指标,包括偿债能力指标、运营能力指标、盈利能力指标和发展能力指标。对企业财务报表进行分析与评价通常是由报表分析者来完成的。如下图所示,常见财务指标分析项目内容:

数据分析中常见的6大类分析方法(建议收藏)

图17 常见财务指标分析具体内容示例

5.3财务比率分析

根据同一时期财务报表中两个或多个项目之间的关系,计算其比率,以评价企业的财务状况和经营成果。财务比率可以评价某项投资在各年之间收益的变化,也可以在某一时点比较某一行业的不同企业。财务比率分析可以消除规模的影响,用来比较不同企业的收益与风险,从而帮助投资者和债权人作出理智的决策。

5.4EVA分析法

EVA是经济增加值模型(Economic Value Added)的简称,是Stern Stewart咨询公司开发的一种新型的价值分析工具和业绩评价指标,是基于剩余收益思想发展起来的新型价值模型。 EVA分析法具体公式:附加经济价值(EVA)=息前税后利润-资金总成本。

此外常见的还有坪效公式:总毛利(元/月)=平均坪效(元/坪/月)*面积(坪)*毛利率(%); 品类公式:总毛利(元/月)= ∑单价(元/件)*单价体积(件/坪)*占坪(坪)*周转率(次/月)*毛利率(%) ;流量公式:总毛利(元/月)=坪流量(次/坪/月)*面积(坪)*转化率(%)*客单价(元/次)*毛利率(%)。

专题大数据分析

所谓专题大数据分析,是指对特定的一些规模巨大的数据进行分析。大数据常用来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。常见特征是数据量大、类型繁多、价值密度低、速度快、时效低。比较常见的专题大数据分析有:市场购物篮分析、重力模型、推荐算法、价格敏感度分析、客户分组分析等分析方法。

6.1市场购物篮分析

通过购物篮/购物车所显示的信息来研究顾客的购买行为。购物篮分析最出名的一个案例就是“啤酒与尿布”:20世纪90年代的美国沃尔玛超市中,其管理人员分析销售数据时发现在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,经过调查发现,原来在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒。随后沃尔玛开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。

数据分析中常见的6大类分析方法(建议收藏)

图18 购物篮分析之啤酒与尿布案例

6.2重力模型分析

应用最多的一种“出行分布模型”。因表述形态与牛顿重力定律而得名。模型认定两区间内的出行次数同出发区的出行产生数成正比,同两区间的交通阻抗的某一乘方数成正比。

6.3推荐算法

是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,目前应用推荐算法比较好的地方主要是网络,其中淘宝做的比较好。所谓推荐算法就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。

6.4敏感性分析法

是指从众多不确定性因素中找出对投资项目经济效益指标有重要影响的敏感性因素,并分析、测算其对项目经济效益指标的影响程度和敏感性程度,进而判断项目承受风险能力的一种不确定性分析方法。见下图:

数据分析中常见的6大类分析方法(建议收藏)

图19 敏感性分析示例

6.5客户分组分析

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zypjfx.html