数据分析中常见的6大类分析方法(建议收藏)

基于硬件成本的不断降低、内存计算的不断成熟和企业业务管理系统应用的不断深入,流程驱动管理逐渐满足不了企业日新月异的发展需求,数据驱动管理越来越得到企业的青睐。企业需要能承载海量数据的高性能数据中心,无论企业应用了什么样的业务管理系统,真正帮助企业经营者做出决策的是数据。

数据分析中常见的6大类分析方法(建议收藏)

六大类分析方法概要说明

要使各种结构化的、非结构化的、海量的数据实现标准化、信息化,能够提供业务绩效评估、业务决策支持等要求,我们首先需要进行数据分析。这里笔者整理出了一套针对不同数据分析对象所采用的6大类分析方法,每类里面包含各种小方法。常见的六大类分析方法主要包含:分解主体分析、钻取分析、常规比较分析、大型管理模型分析、财务和因子分析、专题大数据分析。详见下图:

数据分析中常见的6大类分析方法(建议收藏)

图1 六大类分析方法

分解主题分析

所谓分解主题分析,是指对于不同分析要求,我们可以初步分为营销主题、财务主题、灵活主题等,然后将这些大的主题逐步拆解为不同小的方面来进行分析。

1.1营销主题

针对销售业务的分析,可以分解为客户分析、品类分析、区域分析、消费频率、价值链分析、促销、渠道、经销商、门店分析、同比环比、社交大数据分析、行业市场分析、行业景气指数的分析、市场占有率分析等。例如营销主题单店分析可以分解为以下不同方面来分析,见下图:

数据分析中常见的6大类分析方法(建议收藏)

图2 门店营销分析分解

1.2财务主题

针对财务业务的分析,可以分解为成本费用分析、利润、历史对比、财务法定报告及分析、资本性支出分析、财务预算分析、营销投入产出效率分析、会计核算分析、企业合并分析、偿债能力分析、盈利能力分析、经营现金流量分析等。例如财物主题预算分析可以分解为以下不同方面来分析,见下图:

数据分析中常见的6大类分析方法(建议收藏)

图3 财务预算分析分解

1.3灵活主题分析

包括价格分析、灵活区域分析、贡献度分析、供应商管理分析、采购价格分析、采购返利分析、采购对标分析、仓储数量流分析、存货分析、货损/质量分析、采购预测分析、产能分析、产量分析、EHS分析、价值链分析、供应链分析、运营成本分析、替代品分析及预测、销售渠道分析、员工薪酬福利分析、销售网点分析、招聘管理分析、培训管理分析、销售预测分析、下游物流分析、员工成本分析、购买者分析、员工绩效分析、终端退货分析、售后服务质量分析、人工竞争力分析等。例如灵活主题区域分析可以分解为以下不同区域时间来分析,见下图示例:

数据分析中常见的6大类分析方法(建议收藏)

图4 某公司遭受网络攻击时间/区域分析示例

二 钻取分析

所谓钻取分析,是指改变维的层次,变换分析的粒度。按照方向方式分为:向上和向下钻取。向上钻取是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;是自动生成汇总行的分析方法。向下钻取是从汇总数据深入到细节数据进行观察或增加新维的分析方法。

按照钻取的维度属性划分,可以分为按组织树钻取、按品类树钻取、按其他维度钻取。通过钻取的功能,使用户对数据能更深入了解,更容易发现问题,做出正确的决策。

2.1按组织树钻取

组织树可以按职能结构、层次结构、部门结构、职权结构来建立。要了解与职权相联系的业务情况,了解了职权的组织树就可以进行钻取分析,要了解部门销售业绩情况,可以按部门钻取分析等。某大型集团组织树结构见下图:

数据分析中常见的6大类分析方法(建议收藏)

图5 某大型集团组织机构图

2.2按品类树钻取

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zypjfx.html