两个位都是 1 时,结果才为 1,否则为 0
1 0 0 1 1
& 1 1 0 0 1
1 0 0 0 1
| 或运算两个位都是 0 时,结果才为 0,否则为 1
1 0 0 1 1
| 1 1 0 0 1
1 1 0 1 1
可以用在if语句判断中(替代 || )
^异或运算两个位相同则为 0,不同则为 1
1 0 0 1 1
^ 1 1 0 0 1
0 1 0 1 0
<< 左移运算向左进行移位操作,高位丢弃,低位补 0
int a = 8; a << 3; 移位前:0000 0000 0000 0000 0000 0000 0000 1000 移位后:0000 0000 0000 0000 0000 0000 0100 0000 >>右移运算向右进行移位操作,对无符号数,高位补 0,对于有符号数,高位补符号位
unsigned int a = 8; a >> 3; 移位前:0000 0000 0000 0000 0000 0000 0000 1000 移位后:0000 0000 0000 0000 0000 0000 0000 0001 int a = -8; a >> 3; 移位前:1111 1111 1111 1111 1111 1111 1111 1000 移位前:1111 1111 1111 1111 1111 1111 1111 1111 常见位运算问题
位操作实现乘除法
数 a 向右移一位,相当于将 a 除以 2;数 a 向左移一位,相当于将 a 乘以 2
int a = 2; a >> 1; ---> 1 // a/2 a << 1; ---> 4 // a*2
位操作交换两数
位操作交换两数可以不需要第三个临时变量,虽然普通操作也可以做到,但是没有其效率高
//不通过临时变量交换两数 //普通操作 void swap(int &a, int &b) { a = a + b; b = a - b; a = a - b; } //位与操作 void swap(int &a, int &b) { a ^= b; b ^= a; a ^= b; }位与操作解释:
第一步:a ^= b ---> a = (a^b);
第二步:b ^= a ---> b = b(ab) ---> b = (bb)a = a
第三步:a ^= b ---> a = (ab)a = (aa)b = b
位操作判断奇偶数
只要根据数的最后一位是 0 还是 1 来决定即可,为 0 就是偶数,为 1 就是奇数。
if((a & 1)== 0) { //偶数 } if((a & 1)== 1){ //奇数 }
位操作交换符号
交换符号将正数变成负数,负数变成正数
int reversal(int a) { return ~a + 1; } //整数取反加1,正好变成其对应的负数(补码表示);负数取反加一,则变为其原码,即正数
位操作求绝对值
整数的绝对值是其本身,负数的绝对值正好可以对其进行取反加一求得,即我们首先判断其符号位(整数右移 31 位得到 0,负数右移 31 位得到 -1,即 0xffffffff),然后根据符号进行相应的操作
int abs(int a) { int i = a >> 31; return i == 0 ? a : (~a + 1); }上面的操作可以进行优化,可以将 i == 0 的条件判断语句去掉。我们都知道符号位 i 只有两种情况,即 i = 0 为正,i = -1 为负。对于任何数与 0 异或都会保持不变,与-1 即 0xffffffff进行异或就相当于对此数进行取反,因此可以将上面三目元算符转换为((a^i)-i),即整数时 a 与 0 异或得到本身,再减去 0,负数时与 0xffffffff 异或将 a 进行取反,然后在加上 1,即减去 i(i =-1)
int abs2(int a) { int i = a >> 31; return ((a^i) - i); }
位操作进行高低位交换
给定一个 16 位的无符号整数,将其高 8 位与低 8 位进行交换,求出交换后的值,如:
34520的二进制表示: 10000110 11011000 将其高8位与低8位进行交换,得到一个新的二进制数: 11011000 10000110 其十进制为55430从上面移位操作我们可以知道,只要将无符号数 a>>8 即可得到其高 8 位移到低 8 位,高位补 0;将 a<<8 即可将 低 8 位移到高 8 位,低 8 位补 0,然后将 a>>8 和 a<<8 进行或操作既可求得交换后的结果。
unsigned short a = 34520; a = (a >> 8) | (a << 8);
位操作进行二进制逆序
将无符号数的二进制表示进行逆序,求取逆序后的结果,如
数34520的二进制表示: 10000110 11011000 逆序后则为: 00011011 01100001 它的十进制为7009在字符串逆序过程中,可以从字符串的首尾开始,依次交换两端的数据。在二进制中使用位的高低位交换会更方便进行处理,这里我们分组进行多步处理。
第一步:以每 2 位为一组,组内进行高低位交换
交换前: 10 00 01 10 11 01 10 00 交换后: 01 00 10 01 11 10 01 00
第二步:在上面的基础上,以每 4 位为 1 组,组内高低位进行交换
交换前: 0100 1001 1110 0100 交换后: 0001 0110 1011 0001
第三步:以每 8 位为一组,组内高低位进行交换
交换前: 00010110 10110001 交换后: 01100001 00011011
第四步:以每16位为一组,组内高低位进行交换
交换前: 0110000100011011 交换后: 0001101101100001对于上面的第一步,依次以 2 位作为一组,再进行组内高低位交换,这样处理起来比较繁琐,下面介绍另外一种方法进行处理。先分别取原数 10000110 11011000 的奇数位和偶数位,将空余位用 0 填充:
原数: 10000110 11011000 奇数位: 10000010 10001000 偶数位: 00000100 01010000