在数据库中,除传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供许多用户共享的资源。数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。
打个比方,我们到淘宝上买一件商品,商品只有一件库存,这个时候如果还有另一个人买,那么如何解决是你买到还是另一个人买到的问题?这里肯定要用到事物,我们先从库存表中取出物品数量,然后插入订单,付款后插入付款表信息,然后更新商品数量。在这个过程中,使用锁可以对有限的资源进行保护,解决隔离和并发的矛盾。
锁的分类从对数据操作的类型分类:
读锁(共享锁):针对同一份数据,多个读操作可以同时进行,不会互相影响
写锁(排他锁):当前写操作没有完成前,它会阻断其他写锁和读锁
从对数据操作的粒度分类:
为了尽可能提高数据库的并发度,每次锁定的数据范围越小越好,理论上每次只锁定当前操作的数据的方案会得到最大的并发度,但是管理锁是很耗资源的事情(涉及获取,检查,释放锁等动作),因此数据库系统需要在高并发响应和系统性能两方面进行平衡,这样就产生了“锁粒度(Lock granularity)”的概念。
表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低(MyISAM 和 MEMORY 存储引擎采用的是表级锁);
行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高(InnoDB 存储引擎既支持行级锁也支持表级锁,但默认情况下是采用行级锁);
页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。
适用:从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。
行锁 表锁 页锁MyISAM √
BDB √ √
InnoDB √ √
Memory √
MyISAM 表锁
MyISAM 的表锁有两种模式:
表共享读锁 (Table Read Lock):不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;
表独占写锁 (Table Write Lock):会阻塞其他用户对同一表的读和写操作;
MyISAM 表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后, 只有持有锁的线程可以对表进行更新操作。 其他线程的读、 写操作都会等待,直到锁被释放为止。
默认情况下,写锁比读锁具有更高的优先级:当一个锁释放时,这个锁会优先给写锁队列中等候的获取锁请求,然后再给读锁队列中等候的获取锁请求。
InnoDB 行锁InnoDB 实现了以下两种类型的行锁:
共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。
为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB 还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁:
意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的 IS 锁。
意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的 IX 锁。
索引失效会导致行锁变表锁。比如 vchar 查询不写单引号的情况。
加锁机制乐观锁与悲观锁是两种并发控制的思想,可用于解决丢失更新问题
乐观锁会“乐观地”假定大概率不会发生并发更新冲突,访问、处理数据过程中不加锁,只在更新数据时再根据版本号或时间戳判断是否有冲突,有则处理,无则提交事务。用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式