多个数组元素可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问该数组的元素值。下面是有关灰度图像的一些例子:
im[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行 im[:,i] = 100 # 将第 i 列的所有数值设为100 im[:100,:50].sum() # 计算前100 行、前 50 列所有数值的和 im[50:100,50:100] # 50~100 行,50~100 列(不包括第 100 行和第 100 列) im[i].mean() # 第 i 行所有数值的平均值 im[:,-1] # 最后一列 im[-2,:] (or im[-2]) # 倒数第二行注意,示例仅仅使用一个下标访问数组。如果仅使用一个下标,则该下标为行下标。注意,在最后几个例子中,负数切片表示从最后一个元素逆向计数。我们将会频繁地使用切片技术访问像素值,这也是一个很重要的思想。
我们有很多操作和方法来处理数组对象。本书将在使用到的地方逐一介绍。你可以查阅在线文档或者开源图书 [24] 获取更多信息。
1.3.2 灰度变换将图像读入 NumPy 数组对象后,我们可以对它们执行任意数学操作。一个简单的例子就是图像的灰度变换。考虑任意函数 f,它将 0...255 区间(或者 0...1 区间)映射到自身(意思是说,输出区间的范围和输入区间的范围相同)。下面是关于灰度变换的一些例子:
from PIL import Image from numpy import * im = array(Image.open(\'empire.jpg\').convert(\'L\')) im2 = 255 - im # 对图像进行反相处理 im3 = (100.0/255) * im + 100 # 将图像像素值变换到100...200 区间 im4 = 255.0 * (im/255.0)**2 # 对图像像素值求平方后得到的图像第一个例子将灰度图像进行反相处理;第二个例子将图像的像素值变换到 100...200 区间;第三个例子对图像使用二次函数变换,使较暗的像素值变得更小。图 1-4 为所使用的变换函数图像。图 1-5 是输出的图像结果。你可以使用下面的命令查看图像中的最小和最大像素值:
print int(im.min()), int(im.max())图 1-4:灰度变换示例。三个例子中所使用函数的图像,其中虚线表示恒等变换
图 1-5:灰度变换。对图像应用图 1-4 中的函数:f(x)=255-x 对图像进行反相处理(左);f(x)=(100/255)x+100 对图像进行变换(中);f(x)=255(x/255)2 对图像做二次变换(右)
如果试着对上面例子查看最小值和最大值,可以得到下面的输出结果:
2 255 0 253 100 200 0 255