图 1-6 和图 1-7 为上面直方图均衡化例子的结果。上面一行显示的分别是直方图均衡化之前和之后的灰度直方图,以及累积概率分布函数映射图像。可以看到,直方图均衡化后图像的对比度增强了,原先图像灰色区域的细节变得清晰。
图 1-6:直方图均衡化示例。左侧为原始图像和直方图,中间图为灰度变换函数,右侧为直方图均衡化后的图像和相应直方图
图 1-7:直方图均衡化示例。左侧为原始图像和直方图,中间图为灰度变换函数,右侧为直方图均衡化后的图像和相应直方图
1.3.5 图像平均图像平均操作是减少图像噪声的一种简单方式,通常用于艺术特效。我们可以简单地从图像列表中计算出一幅平均图像。假设所有的图像具有相同的大小,我们可以将这些图像简单地相加,然后除以图像的数目,来计算平均图像。下面的函数可以用于计算平均图像,将其添加到 imtool.py 文件里:
def compute_average(imlist): """ 计算图像列表的平均图像""" # 打开第一幅图像,将其存储在浮点型数组中 averageim = array(Image.open(imlist[0]), \'f\') for imname in imlist[1:]: try: averageim += array(Image.open(imname)) except: print imname + \'...skipped\' averageim /= len(imlist) # 返回uint8 类型的平均图像 return array(averageim, \'uint8\')该函数包括一些基本的异常处理技巧,可以自动跳过不能打开的图像。我们还可以使用 mean() 函数计算平均图像。mean() 函数需要将所有的图像堆积到一个数组中;也就是说,如果有很多图像,该处理方式需要占用很多内存。我们将会在下一节中使用该函数。
1.3.6 图像的主成分分析(PCA)PCA(Principal Component Analysis,主成分分析)是一个非常有用的降维技巧。它可以在使用尽可能少维数的前提下,尽量多地保持训练数据的信息,在此意义上是一个最佳技巧。即使是一幅 100×100 像素的小灰度图像,也有 10 000 维,可以看成 10 000 维空间中的一个点。一兆像素的图像具有百万维。由于图像具有很高的维数,在许多计算机视觉应用中,我们经常使用降维操作。PCA 产生的投影矩阵可以被视为将原始坐标变换到现有的坐标系,坐标系中的各个坐标按照重要性递减排列。
为了对图像数据进行 PCA 变换,图像需要转换成一维向量表示。我们可以使用 NumPy 类库中的 flatten() 方法进行变换。
将变平的图像堆积起来,我们可以得到一个矩阵,矩阵的一行表示一幅图像。在计算主方向之前,所有的行图像按照平均图像进行了中心化。我们通常使用 SVD(Singular Value Decomposition,奇异值分解)方法来计算主成分;但当矩阵的维数很大时,SVD 的计算非常慢,所以此时通常不使用 SVD 分解。下面就是 PCA 操作的代码:
from PIL import Image from numpy import * def pca(X): """ 主成分分析: 输入:矩阵X ,其中该矩阵中存储训练数据,每一行为一条训练数据 返回:投影矩阵(按照维度的重要性排序)、方差和均值""" # 获取维数 num_data,dim = X.shape # 数据中心化 mean_X = X.mean(axis=0) X = X - mean_X if dim>num_data: # PCA- 使用紧致技巧 M = dot(X,X.T) # 协方差矩阵 e,EV = linalg.eigh(M) # 特征值和特征向量 tmp = dot(X.T,EV).T # 这就是紧致技巧 V = tmp[::-1] # 由于最后的特征向量是我们所需要的,所以需要将其逆转 S = sqrt(e)[::-1] # 由于特征值是按照递增顺序排列的,所以需要将其逆转 for i in range(V.shape[1]): V[:,i] /= S else: # PCA- 使用SVD 方法 U,S,V = linalg.svd(X) V = V[:num_data] # 仅仅返回前nun_data 维的数据才合理 # 返回投影矩阵、方差和均值 return V,S,mean_X