[2011 TIP] blind image quality assessment From Natural Scene Statistics to Perceptual Quality
15. Image Registration 图像配准最早的应用在医学图像上,在图像融合之前需要对图像进行配准。在现在的计算机视觉中,配准也是一个需要理解的概念,比如跟踪,拼接等。在KLT中,也会涉及到配准。这里主要是综述文献。[1992 MIA] Image matching as a diffusion process
[1992 PAMI] A Method for Registration of 3-D shapes
[1992] a survey of image registration techniques
[1998 MIA] A survey of medical image registration
[2003 IVC] Image registration methods a survey
[2003 TMI] Mutual-Information-Based Registration of Medical Survey
[2011 TIP] Hairis registration
16. Image Retrieval 图像检索曾经很热,在2000年之后似乎消停了一段时间。最近各种图像的不变性特征提出来之后,再加上互联网搜索的商业需求,这个方向似乎又要火起来了,尤其是在商业界,比如淘淘搜。这仍然是一个非常值得关注的方面。而且图像检索与目标识别具有相通之处,比如特征提取和特征降维。这方面的文章值得一读。在最后给出了两篇Book chapter,其中一篇还是中文的。[2000 PAMI] Content-based image retrieval at the end of the early years
[2000 TIP] PicToSeek Combining Color and Shape Invariant Features for Image Retrieval
[2002] Content-Based Image Retrieval Systems A Survey
[2008] Content-Based Image Retrieval-Literature Survey
[2010] Plant Image Retrieval Using Color,Shape and Texture Features
[2012 PAMI] A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback
CBIR Chinese
fundament of cbir
17. Image Segmentation 图像分割,非常基本但又非常难的一个问题。建议看Sonka和冈萨雷斯的书。这里给出几篇比较好的文章,再次看到了J Malik。他们给出了源代码和测试集,有兴趣的话可以试试。[2004 IJCV] Efficient Graph-Based Image Segmentation
[2008 CVIU] Image segmentation evaluation A survey of unsupervised methods
[2011 PAMI] Contour Detection and Hierarchical Image Segmentation
18. Level Set 大名鼎鼎的水平集,解决了Snake固有的缺点。Level set的两位提出者Sethian和Osher最后反目,实在让人遗憾。个人以为,这种方法除了迭代比较费时,在真实场景中的表现让人生疑。不过,2008年ECCV上的PWP方法在结果上很吸引人。在重初始化方面,Chunming Li给出了比较好的解决方案[1995 PAMI] Shape modeling with front propagation_ a level set approach
[2001 JCP] Level Set Methods_ An Overview and Some Recent Results
[2005 CVIU] Geodesic active regions and level set methods for motion estimation and tracking
[2007 IJCV] A Review of Statistical Approaches to Level Set Segmentation
[2008 ECCV] Robust Real-Time Visual Tracking using Pixel-Wise Posteriors
[2010 TIP] Distance Regularized Level Set Evolution and its Application to Image Segmentation
19. Pyramid 其实小波变换就是一种金字塔分解算法,而且具有无失真重构和非冗余的优点。Adelson在1983年提出的Pyramid优点是比较简单,实现起来比较方便。[1983] The Laplacian Pyramid as a Compact Image Code
20. Radon Transform Radon变换也是一种很重要的变换,它构成了图像重建的基础。关于图像重建和radon变换,可以参考章毓晋老师的书,讲的比较清楚。[1993 PAMI] Image representation via a finite Radon transform
[1993 TIP] The fast discrete radon transform I theory
[2007 IVC] Generalised finite radon transform for N×N images
21. Scale Space 尺度空间滤波在现代不变特征中是一个非常重要的概念,有人说SIFT的提出者Lowe是不变特征之父,而Linderburg是不变特征之母。虽然尺度空间滤波是Witkin最早提出的,但其理论体系的完善和应用还是Linderburg的功劳。其在1998年IJCV上的两篇文章值得一读,不管是特征提取方面还是边缘检测方面。[1987] Scale-space filtering
[1990 PAMI] Scale-Space for Discrete Signals
[1994] Scale-space theory A basic tool for analysing structures at different scales
[1998 IJCV] Edge Detection and Ridge Detection with Automatic Scale Selection