【计算机视觉】图像处理与计算机视觉基础,经典以及最近发展

在这里,我特别声明:本文章的源作者是   杨晓冬  (个人邮箱:xdyang.ustc@gmail.com)。原文的链接是
。版权归 杨晓冬 朋友所有。

我非常感谢原作者辛勤地编写本文章,并愿意共享出来。我也希望转载本文的各位朋友,要注明原作者和出处,以尊重原作者!                 

***************************************************************************************************************************************************************************************

                     图像处理与计算机视觉基础,经典以及最近发展

By xdyang(杨晓冬xdyang.ustc@gmail.com)

一、 绪论 1. 为什么要写这篇文章        从2002年到现在,接触图像快十年了。虽然没有做出什么很出色的工作,不过在这个领域摸爬滚打了十年之后,发现自己对图像处理和计算机视觉的感情越来越深厚。下班之后看看相关的书籍和文献是一件很惬意的事情。平常的一大业余爱好就是收集一些相关的文章,尤其是经典的文章,到现在我的电脑里面已经有了几十G的文章。写这个文档的想法源于我前一段时间整理文献时的一个突发奇想,既然有这个多文献,何不整理出其中的经典,抓住重点来阅读,同时也可以共享给大家。于是当时即兴写了一个《图像处理与计算机视觉中的经典论文》。现在来看,那个文档写得很一般,所共享的论文也非常之有限。就算如此,还是得到了一些网友的夸奖,心里感激不尽。因此,一直想下定决心把这个工作给完善,力求做到尽量全面。


       本文是对现有的图像处理和计算机视觉的经典书籍(后面会有推荐)的一个补充。一般的图像处理书籍都是介绍性的介绍某个方法,在每个领域内都会引用几十上百篇参考文献。有时候想深入研究这个领域的时候却发现文献太多,不知如何选择。但实际上在每个领域都有那么三五篇抑或更多是非读不可的经典文献。这些文献除了提出了很经典的算法,同时他们的Introduction和Related work也是对所在的领域很好的总结。读通了这几篇文献也就等于深入了解了这个领域,比单纯的看书收获要多很多。写本文的目的就是想把自己所了解到的各个领域的经典文章整理出来,不用迷失在参考文献的汪洋大海里。

2. 图像处理和计算机视觉的分类 按照当前流行的分类方法,可以分为以下三部分:
A.图像处理:对输入的图像做某种变换,输出仍然是图像,基本不涉及或者很少涉及图像内容的分析。比较典型的有图像变换,图像增强,图像去噪,图像压      缩,图像恢复,二值图像处理等等。基于阈值的图像分割也属于图像处理的范畴。一般处理的是单幅图像。

B.图像分析:对图像的内容进行分析,提取有意义的特征,以便于后续的处理。处理的仍然是单幅图像。


C.计算机视觉:对图像分析得到的特征进行分析,提取场景的语义表示,让计算机具有人眼和人脑的能力。这时处理的是多幅图像或者序列图像,当然也包括部分单幅图像。


      关于图像处理,图像分析和计算机视觉的划分并没有一个很统一的标准。一般的来说,图像处理的书籍总会或多或少的介绍一些图像分析和计算机视觉的知识,比如冈萨雷斯的数字图像处理。而计算机视觉的书籍基本上都会包括图像处理和图像分析,只是不会介绍的太详细。其实图像处理,图像分析和计算机视觉都可以纳入到计算机视觉的范畴:图像处理->低层视觉(low level vision),图像分析->中间层视觉(middle level vision),计算机视觉->高层视觉(high level vision)。这是一般的计算机视觉或者机器视觉的划分方法。在本文中,仍然按照传统的方法把这个领域划分为图像处理,图像分析和计算机视觉。

3. 图像处理和计算机视觉开源库以及编程语言选择        目前在图像处理中有两种最重要的语言:c/c++和matlab。它们各有优点:c/c++比较适合大型的工程,效率较高,而且容易转成硬件语言,是工业界的默认语言之一。而matlab实现起来比较方便,适用于算法的快速验证,而且matlab有成熟的工具箱可以使用,比如图像处理工具箱,信号处理工具箱。它们有一个共同的特点:开源的资源非常多。在学术界matlab使用的非常多,很多作者给出的源代码都是matlab版本。最近由于OpenCV的兴起和不断完善,c/c++在图像处理中的作用越来越大。总的来说,c/c++和matlab都必须掌握,最好是精通,当然侧重在c/c++上对找工作会有很大帮助。
至于开源库,个人非常推荐OpenCV,主要有以下原因:
(1)简单易入手。OpenCV进入OpenCV2.x的时代后,使用起来越来越简单,接口越来越傻瓜化,越来越matlab化。只要会imread,imwrite,imshow和了解Mat的基本操作就可以开 始入手了。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgzgdw.html