像素越小,单位长度所包含的像素数据就越多,分辨率也就越高,但同样物理大小范围内所对应图像的尺寸也会越大,存储图像所需要的字节数也越多。因而,在图像的放大缩小算法中,放大就是对图像的过采样,缩小是对图像的欠采样。
一般在没有必要对涉及像素的物理分辨率进行实际度量时,通常会称一幅大小为 M × N 的数字图像的空间分辨率为 M × N 像素。
2.图像的灰度级/辐射计量分辨率(Radiometric Resolution)
在数字图像处理中,灰度级分辨率 又叫色阶 ,是指图像中可分辨的灰度级数目,即前文提到的灰度级数目L ,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上光辐射值的强度,所以灰度级分辨率也叫辐射计量分辨率 。
随着图像的灰度级分辨率逐渐降低,图像中包含的颜色数目变少,从而在颜色的角度造成图像信息受损,同样使图像细节表达受到了一定的影响。
数字图像处理与机器视觉 从图像处理到图像识别图像处理、图像分析和图像识别是认知科学与计算机科学中的一个令人兴奋的活跃分支。从1970年这个领域经历了人们对其兴趣的爆炸性增长以来,到20世纪末逐渐步入成熟。其中遥感、技术诊断、智能车自主导航、医学平面和立体成像以及自动监视领域是发展最快的一些方向。这种进展最集中地体现在市场上多种应用这类技术的产品的纷纷涌现。事实上,从数字图像处理到数字图像分析,再发展到最前沿的图像识别技术,其核心都是对数字图像中所含有的信息的提取及与其相关的各种辅助过程。
1.数字图像处理
数字图像处理 (Digital Image Processing)就是指使用电子计算机对量化的数字图像进行处理,具体地说就是通过对图像进行各种加工来改善图像的外观,是对图像的修改和增强。
图像处理的输入是从传感器或其他来源获取的原始的数字图像,输出是经过处理后的输出图像。处理的目的可能是使输出图像具有更好的效果,以便于人的观察;也可能是为图像分析和识别做准备,此时的图像处理是作为一种预处理 步骤,输出图像将进一步供其他图像进行分析、识别算法。
2.数字图像分析
数字图像分析 (Digital Image Analyzing)是指对图像中感兴趣的目标进行检测和测量,以获得客观的信息 。数字图像分析通常是指将一幅图像转化为另一种非图像的抽象形式,例如图像中某物体与测量者的距离、目标对象的计数或其尺寸等。这一概念的外延包括边缘检测和图像分割、特征提取以及几何测量与计数等。
图像分析的输入是经过处理的数字图像,其输出通常不再是数字图像,而是一系列与目标相关的图像特征(目标的描述),如目标的长度、颜色、曲率和个数等。
3.数字图像识别
数字图像识别(Digital Image Recognition)主要是研究图像中各目标的性质和相互关系,识别出目标对象的类别,从而理解图像的含义。这往往囊括了使用数字图像处理技术的很多应用项目,例如光学字符识别(OCR)、产品质量检验、人脸识别、自动驾驶、医学图像和地貌图像的自动判读理解等。
图像识别是图像分析的延伸,它根据从图像分析中得到的相关描述(特征)对目标进行归类,输出使用者感兴趣的目标类别标号信息(符号)。
总而言之,从图像处理到图像分析再到图像识别这个过程,是一个将所含信息抽象化,尝试降低信息熵,提炼有效数据的过程。
从信息论的角度上说,图像应当是物体所含信息的一个概括,而数字图像处理侧重于将这些概括的信息进行变换,例如升高或降低熵值,数字图像分析则是将这些信息抽取出来以供其他过程调用。当然,在不太严格时,数字图像处理也可以兼指图像处理和分析。
读者或许也听过另一个概念,计算机图形学(Computer Graphics) 。此概念与数字图像分析大致相反,它是一个对由概念或数学表述的物体图像进行处理和显示的过程。
什么是机器视觉机器视觉 (Machine Vision),又称计算机视觉 (Computer Vision)。它是将数字图像处理和数字图像分析、图像识别结合起来,试图开发出一种能与人脑的部分机能比拟,能够理解自然景物和环境的系统,在机器人领域中为机器人提供类似人类视觉的功能。计算机视觉是数字成像领域的尖端方向,具有最综合的内容和最广泛的涵盖面。