与向量点积不同的是,函数是连续的,假设现在有两个函数 f 和 g,f 的周期为 2n,我们也想用上述连续累加的方式来使得函数内积和向量内积的概念一致,而积分正是函数累加的概念,所以我们有:
对于上面我们说的傅立叶变换后的正交基,我们容易得到:
容易证明上述标准基为正交基。
在数学里,希尔伯特空间(Hilbert Space)是有限维欧几里得空间的一个推广,是一个完备的内积空间,其定义了一个带有内积的完备向量空间。在希尔伯空间中,一个抽象元素通常被称为向量,它可以是一个复数或者函数。傅立叶分析的一个重要目的是将一个给定的函数表示成一族给定的基底函数的和,而希尔伯特空间为傅立叶分析提供了一种有效的表述方式。
可能大家看到这里要爆炸了,不过不用担心,我们只需要记住上面「两个函数的内积形式」即可。
现实中大部分函数都是非周期的,如果涉及到非周期性函数该怎么办呢?
在介绍非周期性函数之前,我们先简单介绍下欧拉公式。
考虑横轴为 1,纵轴为虚单位 i 的坐标系,图上任意一点都可以表示为
。根据欧拉公式,我们可以写成:
其中,e 为自然对数的底数。
所以坐标轴上的点现在有了两种表示方式:
考虑
, 会随着 t 的增大而逆时针旋转。所以 可以表示为坐标点 A 随着时间 t 逆时针旋转。我们以时间 t 为横坐标,则可以记录到坐标点 A 映射在虚轴的运动轨迹:左边图是我们看到的旋转频率,称为频域,而右边图看到是时间流逝,称为时域,是不是和我们刚刚介绍的(从时域变换到频域)正好相反?也就是说,时域和频域其实是可以相互转换的。
回到正题,考虑非周期函数的傅立叶变换。
事实上,我们可以将非周期函数考虑为周期无穷大的函数,考虑频域中的横坐标:
,当周期 T 无穷大大时,频域图就从离散点变为连续的曲线,如下图: